# Article

Full entry | Fulltext not available (moving wall 24 months)
Keywords:
prime ring; derivation; generalized derivation; extended centroid; Utumi quotient ring; Lie ideal; Banach algebra
Summary:
Let $R$ be a prime ring with its Utumi ring of quotients $U$ and extended centroid $C$. Suppose that $F$ is a generalized derivation of $R$ and $L$ is a noncentral Lie ideal of $R$ such that $F(u)[F(u),u]^n=0$ for all $u \in L$, where $n\geq 1$ is a fixed integer. Then one of the following holds: \begin {itemize} \item [(1)] there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$; \item [(2)] $R$ satisfies $s_4$ and $F(x)=ax+xb$ for all $x\in R$, with $a, b\in U$ and $a-b\in C$; \item [(3)] $\mathop {\rm char}(R)=2$ and $R$ satisfies $s_4$. \end {itemize} As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.
References:
[1] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Monographs and Textbooks in Pure and Applied Mathematics 196 Marcel Dekker, New York (1996). MR 1368853
[2] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivations of prime rings. J. Algebra 71 (1981), 259-267. DOI 10.1016/0021-8693(81)90120-4 | MR 0627439 | Zbl 0463.16023
[3] Brešar, M., Vukman, J.: On left derivations and related mappings. Proc. Am. Math. Soc. 110 (1990), 7-16. DOI 10.1090/S0002-9939-1990-1028284-3 | MR 1028284 | Zbl 0703.16020
[4] Carini, L., Filippis, V. De: Commutators with power central values on a Lie ideal. Pac. J. Math. 193 (2000), 269-278. DOI 10.2140/pjm.2000.193.269 | MR 1755818 | Zbl 1009.16034
[5] Chuang, C.-L.: G{PI}s having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. DOI 10.1090/S0002-9939-1988-0947646-4 | MR 0947646 | Zbl 0656.16006
[6] Filippis, V. De: Generalized derivations and commutators with nilpotent values on Lie ideals. Tamsui Oxf. J. Math. Sci. 22 (2006), 167-175. MR 2285443 | Zbl 1133.16022
[7] Filippis, V. de, Scudo, G., El-Sayiad, M. S. Tammam: An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czech. Math. J. 62 (2012), 453-468. DOI 10.1007/s10587-012-0039-0 | MR 2990186
[8] Dhara, B.: Power values of derivations with annihilator conditions on Lie ideals in prime rings. Commun. Algebra 37 (2009), 2159-2167. DOI 10.1080/00927870802226213 | MR 2531892 | Zbl 1181.16035
[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. DOI 10.2140/pjm.1975.60.49 | MR 0382379
[10] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90 (1968), 1067-1073. DOI 10.2307/2373290 | MR 0239419 | Zbl 0179.18103
[11] Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications 37 American Mathematical Society, Providence (1964). MR 0222106
[12] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168 translation from Algebra i Logika Russian 17 (1978), 220-238, 242-243. MR 0541758
[13] Kim, B.-D.: Jordan derivations on prime rings and their applications in Banach algebras, I. Commun. Korean Math. Soc. 28 (2013), 535-558. DOI 10.4134/CKMS.2013.28.3.535 | MR 3085603 | Zbl 1281.47021
[14] Kim, B.-D.: Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), 607-618. DOI 10.4134/CKMS.2002.17.4.607 | MR 1971004 | Zbl 1101.46317
[15] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. DOI 10.1007/s101149900020 | MR 1760520 | Zbl 0973.16020
[16] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. DOI 10.2140/pjm.1988.134.275 | MR 0961236 | Zbl 0614.16028
[17] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic $2$. Pac. J. Math. 42 (1972), 117-136. DOI 10.2140/pjm.1972.42.117 | MR 0323839 | Zbl 0243.16018
[18] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations. Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. MR 0718903 | Zbl 0515.16018
[19] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. DOI 10.1080/00927879908826682 | MR 1700189 | Zbl 0946.16026
[20] Lee, T. K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. MR 1166215 | Zbl 0769.16017
[21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. DOI 10.1016/0021-8693(69)90029-5 | MR 0238897
[22] Mathieu, M.: Properties of the product of two derivations of a {$C^*$}-algebra. Can. Math. Bull. 32 (1989), 490-497. DOI 10.4153/CMB-1989-072-4 | MR 1019418
[23] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical. Arch. Math. 57 (1991), 469-474. DOI 10.1007/BF01246745 | MR 1129522 | Zbl 0714.46038
[24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42 (2005), 671-678. DOI 10.4134/BKMS.2005.42.4.671 | MR 2181155 | Zbl 1105.16031
[25] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1957), 1093-1100. DOI 10.1090/S0002-9939-1957-0095863-0 | MR 0095863
[26] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 20 (1969), 166-170. DOI 10.1090/S0002-9939-1969-0233207-X | MR 0233207 | Zbl 0164.44603
[27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260-264. DOI 10.1007/BF01362370 | MR 0070061 | Zbl 0067.35101
[28] Thomas, M. P.: The image of a derivation is contained in the radical. Ann. Math. (2) 128 (1988), 435-460. MR 0970607 | Zbl 0681.47016
[29] Vukman, J.: On derivations in prime rings and Banach algebras. Proc. Am. Math. Soc. 116 (1992), 877-884. DOI 10.1090/S0002-9939-1992-1072093-8 | MR 1072093 | Zbl 0792.16034
[30] Yood, B.: Continuous homomorphisms and derivations on Banach algebras. Proceedings of the Conference on Banach Algebras and Several Complex Variables, New Haven, Conn., 1983 Contemp. Math. 32 Amer. Math. Soc., Providence (1984), 279-284 F. Greenleaf et al. MR 0769517 | Zbl 0569.46025

Partner of