Full entry | *Fulltext not available
(moving wall
24 months)
*
Feedback

domain decomposition method; finite element method; preconditioning

References:

[1] Bramble, J. H., Pasciak, J. E., Schatz, A. H.: **The construction of preconditioners for elliptic problems by substructuring. I**. Math. Comput. 47 (1986), 103-134. DOI 10.1090/S0025-5718-1986-0842125-3 | MR 0842125 | Zbl 0615.65112

[2] Dryja, M., Smith, B. F., Widlund, O. B.: **Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions**. SIAM J. Numer. Anal. 31 (1994), 1662-1694. DOI 10.1137/0731086 | MR 1302680 | Zbl 0818.65114

[3] Dryja, M., Widlund, O. B.: **Some domain decomposition algorithms for elliptic problems**. Iterative Methods for Large Linear Systems Austin, TX, 1988. Academic Press, Boston 273-291 (1990). MR 1038100

[4] Farhat, C., Roux, F.-X.: **A method of finite element tearing and interconnecting and its parallel solution algorithm**. Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. DOI 10.1002/nme.1620320604 | Zbl 0758.65075

[5] George, A.: **Nested dissection of a regular finite element mesh**. SIAM J. Numer. Anal. 10 (1973), 345-363. DOI 10.1137/0710032 | MR 0388756 | Zbl 0259.65087

[6] Mandel, J., Brezina, M.: **Balancing domain decomposition for problems with large jumps in coefficients**. Math. Comput. 65 (1996), 1387-1401. DOI 10.1090/S0025-5718-96-00757-0 | MR 1351204 | Zbl 0853.65129

[7] Mandel, J., Tezaur, R.: **Convergence of a substructuring method with Lagrange multipliers**. Numer. Math. 73 (1996), 473-487. DOI 10.1007/s002110050201 | MR 1393176 | Zbl 0880.65087

[8] Payne, L. E., Weinberger, H. F.: **An optimal Poincaré inequality for convex domains**. Arch. Ration. Mech. Anal. 5 (1960), 286-292. DOI 10.1007/BF00252910 | MR 0117419 | Zbl 0099.08402

[9] Toselli, A., Widlund, O.: **Domain Decomposition Methods---Algorithms and Theory**. Springer Series in Computational Mathematics 34 Springer, Berlin (2005). MR 2104179 | Zbl 1069.65138