Previous |  Up |  Next

Article

MSC: 34K20
Keywords:
Lyapunov functional; third-order vector delay differential equation; boundedness; stability
Summary:
In this paper a number of known results on the stability and boundedness of solutions of some scalar third-order nonlinear delay differential equations are extended to some vector third-order nonlinear delay differential equations.
References:
[1] Afuwape, A. U.: Ultimate boundedness results for a certain system of third-order nonlinear differential equations. J. Math. Anal. Appl. 97 (1983), 140–150. DOI 10.1016/0022-247X(83)90243-3 | MR 0721235
[2] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third-order nonlinear ordinary differential equations. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. MR 2124598
[3] Afuwape, A. U., Omeike, M. O.: On the stability and boubdedness of solutions of a kind of third order delay differential equations. Applied Mathematics and Computation 200 (2000), 444–451. DOI 10.1016/j.amc.2007.11.037 | MR 2421659
[4] Burton, T. A.: Volterra Integral and Differential Equations. Academic Press, New York, 1983. MR 0715428 | Zbl 0515.45001
[5] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, Orlando, 1985. MR 0837654 | Zbl 0635.34001
[6] Burton, T. A., Zhang, S.: Unified boundedness, periodicity and stability in ordinary and functional differential equations. Ann. Math. Pura Appl. 145 (1986), 129–158. DOI 10.1007/BF01790540 | MR 0886710 | Zbl 0626.34038
[7] Ezeilo, J. O. C., Tejumola, H. O.: Boundedness and periodicity of solutions of a certain system of third-order nonlinear differential equations. Ann. Math. Pura Appl. 74 (1966), 283–316. DOI 10.1007/BF02416460 | MR 0204787
[8] Ezeilo, J. O. C.: n-dimensional extensions of boundedness and stability theorems for some third-order differential equations. J. Math. Anal. Appl. 18 (1967), 395–416. DOI 10.1016/0022-247X(67)90035-2 | MR 0212298 | Zbl 0173.10302
[9] Ezeilo, J. O. C., Tejumola, H. O.: Further results for a system of third-order ordinary differential equations. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151. MR 0425261
[10] Hale, J. K.: Theory of Functional Differential Equations. Springer Verlag, New York, 1977. MR 0508721 | Zbl 0352.34001
[11] Sadek, A. I.: Stability and Boundedness of a Kind of Third-Order Delay Differential System. Applied Mathematics Letters 16 (2003), 657–662. DOI 10.1016/S0893-9659(03)00063-6 | MR 1986031 | Zbl 1056.34078
[12] Sadek, A. I.: On the stability of solutions of certain fourth order delay differential equations. Applied Mathematics and Computation 148 (2004), 587–597. DOI 10.1016/S0096-3003(02)00925-6 | MR 2015393 | Zbl 1047.34089
[13] Tiryaki, A.: Boundedness and periodicity results for a certain system of third-order nonlinear differential equations. Indian J. Pure Appl. Math. 30, 4 (1999), 361–372. MR 1695688 | Zbl 0936.34041
[14] Zhu, Y.: On stability, boundedness and existence of periodic solution of a kind of third-order nonlinear delay differential system. Ann. of Diff. Eqs. 8, 2 (1992), 249–259. MR 1190138 | Zbl 0758.34072
[15] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. The Mathematical Society of Japan, Tokyo, 1996. MR 0208086
Partner of
EuDML logo