Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
extremal graph problem; similarity of graphs
In this paper, we investigate a measure of similarity of graphs similar to the Ramsey number. We present values and bounds for $g(n,l)$, the biggest number $k$ guaranteeing that there exist $l$ graphs on $n$ vertices, each two having edit distance at least $k$. By edit distance of two graphs $G$, $F$ we mean the number of edges needed to be added to or deleted from graph $G$ to obtain graph $F$. This new extremal number $g(n, l)$ is closely linked to the edit distance of graphs. Using probabilistic methods we show that $g(n, l)$ is close to $\frac 12\binom n2$ for small values of $l>2$. We also present some exact values for small $n$ and lower bounds for very large $l$ close to the number of non-isomorphic graphs of $n$ vertices.
[1] Alon, N., Shapira, A., Sudakov, B.: Additive approximation for edge-deletion problems. Ann. Math. (2) 170 (2009), 371-411. MR 2521119 | Zbl 1185.05132
[2] Alon, N., Spencer, J. H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization John Wiley & Sons, Hoboken (2008). MR 2437651 | Zbl 1148.05001
[3] Alon, N., Stav, U.: What is the furthest graph from a hereditary property?. Random Struct. Algorithms 33 (2008), 87-104. MR 2428979 | Zbl 1146.05046
[4] Axenovich, M., Kézdy, A., Martin, R.: On the editing distance of graphs. J. Graph Theory 58 (2008), 123-138. DOI 10.1002/jgt.20296 | MR 2407000 | Zbl 1156.05027
[5] Balogh, J., Martin, R.: Edit distance and its computation. Electron. J. Comb. (electronic only) 15 (2008), Research Paper R20, 27 pages. MR 2383440 | Zbl 1159.05030
[6] Chen, D., Eulenstein, O., Fernández-Baca, D., Sanderson, M.: Supertrees by flipping. Computing and Combinatorics; Proc. of the 8th Annual International Conf., Singapore, 2002. O. H. Ibarra et al. Lecture Notes in Comput. Sci. 2387 Springer, Berlin (2002), 391-400. MR 2064534 | Zbl 1077.92514
[7] Chung, F. R. K., Erdős, P., Graham, R. L.: Minimal decompositions of graphs into mutually isomorphic subgraphs. Combinatorica 1 (1981), 13-24. DOI 10.1007/BF02579173 | MR 0602412 | Zbl 0491.05049
[8] Wet, P. O. de: Constructing a large number of nonisomorphic graphs of order $n$. Morehead Electronic Journal of Applicable Mathematics 1 (2001), 2 pages.
[9] Dzido, T., Krzywdziński, K.: On a local similarity of graphs. Discrete Math. 338 (2015), 983-989. DOI 10.1016/j.disc.2015.01.016 | MR 3318633
Partner of
EuDML logo