Previous |  Up |  Next


Full entry | Fulltext not available (moving wall 24 months)      Feedback
rigid mesh; well-centered mesh; approximative domain; single element mesh; Sommerville tetrahedron
The motivation for this paper comes from physical problems defined on bounded smooth domains $\Omega $ in 3D. Numerical schemes for these problems are usually defined on some polyhedral domains $\Omega _h$ and if there is some additional compactness result available, then the method may converge even if $\Omega _h \to \Omega $ only in the sense of compacts. Hence, we use the idea of meshing the whole space and defining the approximative domains as a subset of this partition. \endgraf Numerical schemes for which quantities are defined on dual partitions usually require some additional quality. One of the used approaches is the concept of \emph {well-centeredness}, in which the center of the circumsphere of any element lies inside that element. We show that the one-parameter family of Sommerville tetrahedral elements, whose copies and mirror images tile 3D, build a well-centered face-to-face mesh. Then, a shape-optimal value of the parameter is computed. For this value of the parameter, Sommerville tetrahedron is invariant with respect to reflection, i.e., 3D space is tiled by copies of a single tetrahedron.
[1] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis. Vol. 7: Solution of Equations in $\mathbb R^n$ (Part 3). Techniques of Scientific Computing (Part 3) North-Holland/Elsevier, Amsterdam 713-1020 (2000), P. Ciarlet et al. MR 1804748 | Zbl 0981.65095
[2] Feireisl, E., Hošek, R., Michálek, M.: A convergent numerical method for the full Navier-Stokes-Fourier system in smooth physical domains. Submitted to SIAM J. Numer. Anal. (2015), Available as preprint IM-2015-3 at DOI 10.1093/imanum/drv049 | MR 3377377
[3] Field, D. A., Smith, W. D.: Graded tetrahedral finite element meshes. Int. J. Numer. Methods Eng. 31 413-425 (1991). DOI 10.1002/nme.1620310302 | Zbl 0825.73792
[4] Goldberg, M.: Three infinite families of tetrahedral space-fillers. J. Comb. Theory, Ser. A 16 348-354 (1974). DOI 10.1016/0097-3165(74)90058-2 | MR 0343156 | Zbl 0286.52008
[5] Hirani, A. N., Nakshatrala, K. B., Chaudhry, J. H.: Numerical method for Darcy flow derived using discrete exterior calculus. ArXiv:0810.3434 [math.NA] (2008). MR 3360883
[6] Naylor, D. J.: Filling space with tetrahedra. Int. J. Numer. Methods Eng. 44 1383-1395 (1999). DOI 10.1002/(SICI)1097-0207(19990410)44:10<1383::AID-NME616>3.0.CO;2-I | MR 1678387 | Zbl 0941.65012
[7] Sazonov, I., Hassan, O., Morgan, K., Weatherill, N. P.: Yee's scheme for the integration of Maxwell's equation on unstructured meshes. Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006) P. Wesseling, et al. TU Delft, The Netherlands (2006).
[8] Senechal, M.: Which tetrahedra fill space? Math. Mag. 54 227-243 (1981). DOI 10.2307/2689983 | MR 0644075
[9] Sommerville, D.: Space-filling tetrahedra in Euclidean space. Proc. Edinburgh Math. Soc. 41 49-57 (1923).
[10] VanderZee, E., Hirani, A. N., Guoy, D., Ramos, E. A.: Well-centered triangulation. SIAM J. Sci. Comput. 31 4497-4523 (2010). DOI 10.1137/090748214 | MR 2594991 | Zbl 1253.65030
[11] VanderZee, E., Hirani, A. N., Guoy, D., Zharnitsky, V., Ramos, E. A.: Geometric and combinatorial properties of well-centered triangulations in three and higher dimensions. Comput. Geom. 46 700-724 (2013). DOI 10.1016/j.comgeo.2012.11.003 | MR 3030662 | Zbl 1269.65021
Partner of
EuDML logo