Previous |  Up |  Next

Article

Keywords:
exponential distribution; exponentiated exponential distribution; maximum likelihood estimation
Summary:
Many lifetime distributions are motivated only by mathematical interest. Here, eight new families of distributions are introduced. These distributions are motivated as models for the stress of a system consisting of components working in parallel/series and each component has a fixed number of sub-components working in parallel/series. Mathematical properties and estimation procedures are derived for one of the families of distributions. A real data application shows superior performance of a three-parameter distribution (performance assessed with respect to Kolmogorov-Smirnov statistics, AIC values, BIC values, CAIC values, AICc values, HQC values, probability-probability plots, quantile-quantile plots and density plots) versus thirty one other distributions, each having at least three parameters.
References:
[1] Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Control 19 (1974), 716-723. DOI 10.1109/tac.1974.1100705 | MR 0423716 | Zbl 0314.62039
[2] Bozdogan, H.: Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika 52 (1987), 345-370. DOI 10.1007/bf02294361 | MR 0914460 | Zbl 0627.62005
[3] Burnham, K. P., D., Anderson, R.: Multimodel inference: Understanding AIC and BIC in model selection. Sociolog. Methods Res. 33 (2004), 261-304. DOI 10.1177/0049124104268644 | MR 2086350
[4] Ferguson, T. S.: A Course in Large Sample Theory. Chapman and Hall, London 1996. DOI 10.1007/978-1-4899-4549-5 | MR 1699953 | Zbl 0871.62002
[5] Gupta, R. C., Gupta, P. L., Gupta, R. D.: Modeling failure time data by Lehman alternatives. Commun. Statist. - Theory and Methods 27 (1998), 887-904. DOI 10.1080/03610929808832134 | MR 1613497 | Zbl 0900.62534
[6] Gupta, R. D., Kundu, D.: Generalized exponential distributions. Australian and New Zealand J. Statist. 41 (1999), 173-188. DOI 10.1111/1467-842x.00072 | MR 1705342 | Zbl 1054.62013
[7] Hannan, E. J., Quinn, B. G.: The determination of the order of an autoregression. J. Royal Statist. Soc. B 41 (1979), 190-195. MR 0547244 | Zbl 0408.62076
[8] Hurvich, C. M., Tsai, C.-L.: Regression and time series model selection in small samples. Biometrika 76 (1989), 297-307. DOI 10.1093/biomet/76.2.297 | MR 1016020 | Zbl 0669.62085
[9] Kakde, C. S., Shirke, D. T.: On exponentiated lognormal distribution. Int. J. Agricult. Statist. Sci. 2 (2006), 319-326.
[10] Kolmogorov, A.: Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari 4 (1933), 83-91.
[11] Kolowrocki, K.: Reliability of Large Systems. Elsevier, New York 2004.
[12] Leadbetter, M. R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer Verlag, New York 1987. MR 0691492 | Zbl 0518.60021
[13] Lehmann, L. E., Casella, G.: Theory of Point Estimation. Second edition. Springer Verlag, New York 1998. DOI 10.1007/b98854 | MR 1639875
[14] Lemonte, A. J., Cordeiro, G. M.: The exponentiated generalized inverse Gaussian distribution. Statist. Probab. Lett. 81 (2011), 506-517. DOI 10.1016/j.spl.2010.12.016 | MR 2765171 | Zbl 1207.62028
[15] Marshall, A. W., Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84 (1997), 641-652. DOI 10.1093/biomet/84.3.641 | MR 1603936 | Zbl 0888.62012
[16] Mudholkar, G. S., Srivastava, D. K.: Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliability 42 (1993), 299-302. DOI 10.1109/24.229504 | Zbl 0800.62609
[17] Mudholkar, G. S., Srivastava, D. K., Friemer, M.: The exponential Weibull family: Analysis of the bus-motor-failure data. Technometrics 37 (1995), 436-445. DOI 10.2307/1269735
[18] Mudholkar, G. S., Srivastava, D. K., Kollia, G. D.: A generalization of the Weibull distribution with application to the analysis of survival data. J. Amer. Statist. Assoc. 91 (1996), 1575-1583. DOI 10.2307/2291583 | MR 1439097 | Zbl 0881.62017
[19] Nadarajah, S.: The exponentiated Gumbel distribution with climate application. Environmetrics 17 (2005), 13-23. DOI 10.2307/2291583 | MR 2222031
[20] Nadarajah, S.: The exponentiated exponential distribution: A survey. Adv. Statist. Anal. 95 (2011), 219-251. DOI 10.1007/s10182-011-0154-5 | MR 2823560 | Zbl 1274.62113
[21] Nadarajah, S., Gupta, A. K.: The exponentiated gamma distribution with application to drought data. Calcutta Statist. Assoc. Bull. 59 (2007), 29-54. MR 2422847 | Zbl 1155.33305
[22] Nadarajah, S., Kotz, S.: The exponentiated type distributions. Acta Applic. Math. 92 (2006), 97-111. DOI 10.1007/s10440-006-9055-0 | MR 2265333 | Zbl 1128.62015
[23] Nichols, M. D., Padgett, W. J.: A bootstrap control chart for Weibull percentiles. Qual. Reliab. Engrg. Int. 22 (2006), 141-151. DOI 10.1002/qre.691
[24] Qian, L.: The Fisher information matrix for a three-parameter exponentiated Weibull distribution under type II censoring. Statist. Meth. 9 (2012), 320-329. DOI 10.1016/j.stamet.2011.08.007 | MR 2871434
[25] Team, R Development Core: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria 2014.
[26] Ristic, M., Nadarajah, S.: A new lifetime distribution. J. Statist. Comput. Simul. 84 (2014), 135-150. DOI 10.1080/00949655.2012.697163 | MR 3169316
[27] Schwarz, G. E.: Estimating the dimension of a model. Ann. Statist. 6 (1978), 461-464. DOI 10.1214/aos/1176344136 | MR 0468014 | Zbl 0379.62005
[28] Shams, T. M.: The Kumaraswamy-generalized exponentiated Pareto distribution. European J. Appl. Sci. 5 (2013), 92-99.
[29] Smirnov, N.: Table for estimating the goodness of fit of empirical distributions. Ann. Math. Statist. 19 (1948), 279-281. DOI 10.1214/aoms/1177730256 | MR 0025109 | Zbl 0031.37001
Partner of
EuDML logo