Previous |  Up |  Next

Article

MSC: 53C15, 53C50
Keywords:
Almost contact manifold; B-metric; cone; $S^1$-solvable extension; complex space-form; Norden metric
Summary:
The object of investigations are almost contact B-metric manifolds which are derived as a product of a real line and a 2-dimensional manifold equipped with a complex structure and a Norden metric. There are used two different methods for generation of the B-metric on the product manifold. The constructed manifolds are characterised with respect to the Ganchev–Mihova–Gribachev classification and their basic curvature properties.
References:
[1] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston, 2002. MR 1874240 | Zbl 1011.53001
[2] Ganchev, G., Borisov, A.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulg. Sci. 39 (1986), 31–34. MR 0857345 | Zbl 0608.53031
[3] Ganchev, G., Mihova, V., Gribachev, K.: Almost contact manifolds with B-metric. Math. Balkanica (N.S.) 7 (1993), 261–276. MR 1269881 | Zbl 0830.53031
[4] Gribachev, K., Mekerov, D., Djelepov, G.: Generalized B-manifolds. C. R. Acad. Bulg. Sci. 38 (1985), 299–302. MR 0788392
[5] Ivanov, S., Manev, H., Manev, M.: Sasaki-like almost contact complex Riemannian manifolds. arXiv.org arXiv:1402.5426 (2014), 1–19. MR 3521472
[6] Manev, H.: On the structure tensors of almost contact B-metric manifolds. Filomat 29 (2015), 427–436. DOI 10.2298/FIL1503427M | MR 3359436
[7] Manev, H.: Almost contact B-metric structures and the Bianchi classification of the three-dimensional Lie algebras. arXiv.org arXiv:1412.8142 (2014), 1–12. MR 3467741
[8] Manev, H.: Matrix Lie groups as 3-dimensional almost contact B-metric manifolds. Facta Universitatis (Niš), Ser. Math. Inform 30, 3 (2015), 341–351, arXiv:1503.00312. MR 3352468
[9] Manev, H.: Space-like and time-like hyperspheres in real pseudo-Riemannian 4-spaces with almost contact B-metric structures. arXiv.org arXiv:1504.00267 (2015), 1–8.
[10] Manev, H., Mekerov, D.: Lie groups as 3-dimensional almost contact B-metric manifolds. J. Geom. 106 (2015), 229–242. DOI 10.1007/s00022-014-0244-0 | MR 3353833 | Zbl 1327.53030
[11] Manev, M.: Natural connection with totally skew-symmetric torsion on almost contact manifolds with B-metric. Int. J. Geom. Methods Mod. Phys. 9, 1250044 (2012), 1–20. DOI 10.1142/S0219887812500442 | MR 2948863 | Zbl 1261.53025
[12] Manev, M., Gribachev, K.: Contactly conformal transformations on almost contact manifolds with B-metric. Serdica Math. J. 19 (1993), 287–299. MR 1269769
[13] Manev, M., Gribachev, K.: Conformally invariant tensors on almost contact manifolds with B-metric. Serdica Math. J. 20 (1994), 133–147. MR 1333343 | Zbl 0833.53034
[14] Manev, M., Ivanova, M.: Canonical type connections on almost contact manifold with B-matric. Ann. Global Anal. Geom. 43, 4 (2013), 397–408. DOI 10.1007/s10455-012-9351-z | MR 3038542
[15] Manev, M., Ivanova, M.: A classification of the torsion tensors on almost contact manifolds with B-metric. Cent. Eur. J. Math. 12 (2014), 1416–1432. MR 3224009 | Zbl 1310.53069
[16] Mekerov, D., Manev, M.: On the geometry of quasi-Kähler manifolds with Norden metric. Nihonkai Math. J. 16 (2005), 89–93. MR 2217549 | Zbl 1094.53021
[17] Nakova, G., Gribachev, K.: Submanifolds of some almost contact manifolds with B-metric with codimension two, I. Math. Balkanica (N.S.) 11 (1997), 255–267. MR 1657412 | Zbl 1032.53022
Partner of
EuDML logo