Previous |  Up |  Next


mathematical discourse
We present a modular architecture for processing informal mathematical language as found in textbooks and mathematical publications. We point at its properties relevant in addressing three aspects of informal mathematical discourse: (i) the interleaved symbolic and natural language, (ii) the linguistic, domain, and notational context, and (iii) the imprecision of the informal language. The objective in the modular approach is to enable parameterisation of the system with respect to the natural language of the text and the mathematical domain of discourse.
1. Baur, J.: Syntax und Semantik mathematischer Texte. Diplomarbeit. Computerlinguistik, Universität des Saarlandes, Saarbrücken, Germany.
2. Horacek, H., Wolska, M.: Interpreting semi-formal utterances in dialogs about mathematical proofs. Data and Knowledge Engineering, 58(1):90-106.
3. Natho, N., Jeschke, S., Pfeiffer, O., Wilke, M.: Natural language processing methods for extracting information from mathematical texts. Advances in Communication Systems and Electrical Engineering, LNEE 4, pp. 297–308.
4. Kamareddine, F., Lamar, R., Maarek, M., Wells, J. B.: Restoring Natural Language as a Computerised Mathematics Input Method. Zbl 1202.68383
5. H., Kamp, U., Reyle: From Discourse to Logic. Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory. Kluwer, Dordrecht.
6. Lakoff, G., Núñez, R. E.: Where mathematics comes from. How the embodied mind brings mathematics into being. New York: Basic Books. MR 1794854
7. Sgall, P., Hajičová, E., Panevová, J.: The meaning of the sentence in its semantic and pragmatic aspects. Dordrecht: Reidel.
8. Wolska, M., Kruijff-Korbayová: Analysis of mixed natural and symbolic language input in mathematical dialogs. In Proceedings of ACL-04, pp. 25–32.
9. Wolska, M., Kruijff-Korbayová, Horacek, H.: Lexical-semantic interpretation of language input in mathematical dialogs. In Proceedings of the ACL 2$nd$ Workshop on Text Meaning and Interpretation, pp. 81–88.
10. Wolska, M., Kruijff-Korbayová, I.: Modeling anaphora in informal mathematical dialogue. In Proceedings of the 10$th$ Workshop on the Semantics and Pragmatics of Dialogue (brandial-06), pp. 147–154.
11. Zinn, C.: Supporting the formal verification of mathematical texts. Journal of Applied Logic, 4(4), pp. 592–621. MR 2277555 | Zbl 1107.68104
Partner of
EuDML logo