Previous |  Up |  Next

Article

References:
[1] H. Bauer: Harmonische Räume und ihre Potentialtheorie. Springer Verlag, Berlin, 1966. MR 0210916 | Zbl 0142.38402
[2] N. Boboc С. Constantinescu, A. Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions. Nagoya Math. J. 23 (1963), 73-96. MR 0162957
[3] Ju. D. Burago, V. G. Mazja: Some questions in potential theory and function theory for regions with irregular boundaries. (Russian), Zapiski nauč. sem. Leningrad otd. MIAN 3 (1967).
[4] M. Dont: Non-tangential limits of the double layer potentials. Časopis pro pěstování matematiky 97 (1972), 231-258. MR 0444975 | Zbl 0237.31012
[5] H. Federer, W. H. Fleming: Normal and integral currents. Annals of Math. 72 (1960), 458-520. DOI 10.2307/1970227 | MR 0123260 | Zbl 0187.31301
[6] L. L. Helms: Introduction to potential theory. Wiley-Interscience, New York, 1969. MR 0261018 | Zbl 0188.17203
[7] J. Köhn, M. Sieveking: Zum Cauchyschen und Dirichletschen Problem. Math. Ann. 177 (1968), 133-142. DOI 10.1007/BF01350789 | MR 0227445
[8] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. DOI 10.2307/1994580 | MR 0209503
[9] J. Král: Flows of heat and the Fourier problem. Czechoslovak Math. J. 20 (95) (1970), 556-598. MR 0271554
[10] J. Král: A note on the Robin problem in potential theory. Comment. Math. Univ. Carolinae (to appear). MR 0333219
[11] I. Netuka: Generalized Robin problem in potential theory. Czechoslovak Math. J. 22 (97) (1972), 312-324. MR 0294673 | Zbl 0241.31008
[12] I. Netuka: An operator connected with the third boundary value problem in potential theory. ibid. 462-489. MR 0316733 | Zbl 0241.31009
[13] I. Netuka: The third boundary value problem in potential theory. ibid. 554-580. MR 0313528 | Zbl 0383.31002
[14] I. Netuka: Double layer potential representation of the solution of the Dirichlet problem. Comment. Math. Univ. Carolinae 14 (1973), 183-185. MR 0316725 | Zbl 0255.31009
[15] С. de la Vallée Poussin: Propriété des fonctions harmoniques dans un domaine ouvert limité par des surfaces à courbure borné. Ann. Scuola Norm. Sup. Pisa 2 (1933), 167-197.
[16] Š. Schwabik: On an integral operator in the space of functions with bounded variation. Časopis pro pěstování matematiky 97 (1972), 297-330. MR 0450906 | Zbl 0255.47057
[17] R. Sikorski: Funkcje rzeczewiste. Tom 1, PWN, Warszava, 1958.
Partner of
EuDML logo