Previous |  Up |  Next

Article

References:
[1] J. Ježek: The lattice of equational theories. Part I: Modular elements. Czech. Math. J. 31 (1981), 127-153. MR 0604120
[2] J. Ježek: The lattice of equational theories. Part II: The lattice of full sets of terms. Czech. Math. J. 31 (1981), 573-603. MR 0631604
[3] J. Ježek: Primitive classes of algebras with unary and nullary operations. Colloq. Math. 20 (1969), 159-179. DOI 10.4064/cm-20-2-159-179 | MR 0246813
[4] J. Ježek: On atoms in lattices of primitive classes. Comment. Math. Univ. Carolinae 11 (1970), 515-532. MR 0269571
[5] J. Ježek: Varieties of algebras with equationally definable zeros. Czechoslovak Math. J. 27 (1977), 473-503. MR 0453610
[6] J. Ježek: EDZ-varieties: The Schreier property and epimorphisms onto. Comment. Math. Univ. Carolinae 17 (1976), 281-290. MR 0409317
[7] M. Kozák: Finiteness conditions on EDZ-varieties. Comment. Math. Univ. Carolinae 17 (1976), 461-472. MR 0424646
[8] R. McKenzie: Definability in lattices of equational theories. Annals of Math. Logic 3 (1971), 197-237. DOI 10.1016/0003-4843(71)90007-6 | MR 0280349 | Zbl 0328.02038
[9] A. Tarski: Equational logic and equational theories of algebras. 275 - 288 in: H. A. Schmidt, K. Schütte and H. J. Thiele, eds., Contributions to Mathematical Logic, North-Holland, Amsterdam 1968. MR 0237410 | Zbl 0209.01402
Partner of
EuDML logo