Previous |  Up |  Next

Article

References:
[1] Borel A.: La cohomologie mod 2 de certains espaces homogènes. Comment. Math. Helvetici 27, 165-197 (1953). DOI 10.1007/BF02564561 | MR 0057541
[2] Bartík V., Korbaš J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds. Rend. Circ. Mat. Palermo (2) (Suppl. 6), 19-29 (1984). MR 0782702
[3] Hsiang W. C., Szcarba R. H.: On the tangent bundle of a Grassmann manifold. Amer. J. Math. 86, 698-704 (1964). DOI 10.2307/2373153 | MR 0172304
[4] Korbaš J.: On the Stiefel-Whitney classes and the span of Grassmann manifolds. (to appear).
[5] Milnor J., Stasheff J.: Characteristic classes. Annals of Mathematics Studies 76. Princeton: Princeton University Press 1974. MR 0440554 | Zbl 0298.57008
[6] Mosher R. E., Tangora M. C.: Cohomology operations and applications in homotopy theory. New York, Evanston and London: Harper & Row 1968. MR 0226634 | Zbl 0153.53302
[7] Oproiu V.: Some non-embedding theorems for the Grassmann manifolds $G_{2,n}$ and $G_{3,n}$. Proc. Edinburgh. Math. Soc. 20, 177-185 (1976-77). DOI 10.1017/S0013091500026249 | MR 0445530
[8] Oproiu V.: Some results concerning the non-embedding codimension of Grassmann manifolds in Euclidean spaces. Rev. Roumaine Math. Pures Appl. XXVI, 275-286 (1981). MR 0616042 | Zbl 0465.57011
[9] Thomas E.: On tensor products of $n$-plane bundles. Arch. Math. (Basel) X, 174-179 (1959). DOI 10.1007/BF01240783 | MR 0107234 | Zbl 0192.29501
[10] Thomas E.: Vector fields on manifolds. Bull. Amer. Math. Soc. 75, 643-683 (1969). DOI 10.1090/S0002-9904-1969-12240-8 | MR 0242189 | Zbl 0183.51703
Partner of
EuDML logo