Previous |  Up |  Next

Article

Title: On bijectivity of the canonical transformation $[\beta_G X;Y]_G \to [X;Y]_G$ (English)
Author: Bartík, Vojtěch
Author: Markl, Martin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 4
Year: 1988
Pages: 682-700
.
Category: math
.
MSC: 55P65
MSC: 55P91
idZBL: Zbl 0672.55006
idMR: MR962912
DOI: 10.21136/CMJ.1988.102264
.
Date available: 2008-06-09T15:24:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102264
.
Reference: [1] Bartík v.: General bridge-mapping theorem.Comment. Math. Univ. Carolinae 16, 4 (1975), 693-698 (Russian). MR 0391092
Reference: [2] Bartík V.: On the bijectivity of the canonical transformation $[\beta X;Y]\rightarrow [X;Y]$.Quart. J. Math. Oxford (2), 29 (1978), 77-91. MR 0493853, 10.1093/qmath/29.1.77
Reference: [3] Bartík V.: On the bijectivity of the canonical transformation $[\beta\sb{G} X;Y]\sb{G} \rightarrow [X;Y]\sb{G}$.Abstracts of 4th International Conference ,,Topology and its Applications", Dubrovnik, Sept. 30-Oct. 5 1985, Zagreb 1985.
Reference: [4] Borel A.: Seminar on transformation groups.Annals of Math. Studies 46, Princeton University Press, 1960. Zbl 0091.37202, MR 0116341
Reference: [5] Bredon G. E.: Introduction to compact transformation groups.New York, 1972. Zbl 0246.57017, MR 0413144
Reference: [6] Colder A., Siegel J.: Homotopy and uniform homotopy.Trans. Amer. Math. Soc. 235 (1978), 245-270. MR 0458416, 10.1090/S0002-9947-1978-0458416-6
Reference: [7] Calder A., Siegel J.: Homotopy and uniform homotopy II.Proc. Amer. Math. Soc. 78 (1980), 288-290. Zbl 0452.55007, MR 0550515, 10.1090/S0002-9939-1980-0550515-8
Reference: [8] Dold A.: Lectures on Algebraic Topology.Springer-Verlag 1972. Zbl 0234.55001, MR 0415602
Reference: [9] Markl M.: On the $G$-spaces having an ${\cal S}-G-{\rm CW}$-approximation by a $G-{\rm CW}$-complex of finite $G$-type.Comment. Math. Univ. Carolinae 24, 3 (1983). MR 0730149
Reference: [10] Matumoto T.: Equivariant $K$-theory and Fredholm operators.J. Fac. Sci. Univ. Tokyo, Sect. IA, 18(1971), 109-112. Zbl 0213.25402, MR 0290354
Reference: [11] Matumoto T.: On $G$-${\rm CW}$-complexes and a theorem of J.H.C. Whitehead.J. Fac. Sci. Univ. Tokyo, Sect. I, 18 (1971), 363-74. MR 0345103
Reference: [12] May J. P.: The homotopical foundations of algebraic topology.Mimeographed notes, University of Chicago.
Reference: [13] Milnor J.: On space having the homotopy type of a $CW$-complex.Trans. Amer. Math. Soc. 90 (1959), 272-280. MR 0100267
Reference: [14] Morita K.: Čech cohomology and covering dimension for topological spaces.Fund. Math. 87(1975), 31-52. Zbl 0336.55003, MR 0362264, 10.4064/fm-87-1-31-52
Reference: [15] Murayama M.: On $G$-$ANR$'s and their $G$-homotopy types.Osaka J. Math. 20 (1983), 479-512. Zbl 0531.57034, MR 0718960
Reference: [16] Palais R. S.: The classification of $G$-spaces.Memoirs of the Amer. Math. Soc., Number 36 (1960). Zbl 0119.38403, MR 0177401
Reference: [17] Spanier E. H.: Algebraic Topology.Springer-Verlag. Zbl 0810.55001, MR 0666554
Reference: [18] Waner S.: Equivariant homotopy theory and Milnor's theorem.Trans. Amer. Math. Soc. 258(1980), 351-368. Zbl 0444.55010, MR 0558178
.

Files

Files Size Format View
CzechMathJ_38-1988-4_13.pdf 2.598Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo