Previous |  Up |  Next

Article

References:
[1] Chang D. K., Rao M. M.: Bimeasures and sampling theorems for weakly harmonizable processes. Stochastic Anal. Appl. 1 (1983), 21-55. DOI 10.1080/07362998308809003 | MR 0700356 | Zbl 0511.60034
[2] Chang D. K., Rao M. M.: Bimeasures and nonstationary processes. Real and Stochastic Analysis, 7-118, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986. MR 0856580 | Zbl 0616.60009
[3] Diestel J., Uhl J. J.: Vector measures. Amer. Math. Soc. Surveys, No. 15, Providence, 1977. MR 0453964 | Zbl 0369.46039
[4] Diestel J.: Sequences and Series in Banach spaces. Graduate Texts in Mathematics 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. MR 0737004
[5] Dobrakov I.: On integration in Banach spaces, I. Czech. Math. J. 20 (95), (1970), 511 - 536. MR 0365138 | Zbl 0215.20103
[6] Dobrakov I.: On integration in Banach spaces, II. Czech. Math. J. 20 (95), (1970), 680-695. MR 0365139 | Zbl 0224.46050
[7] Dobrakov I.: On integration in Banach spaces, III. Czech. Math. J. 29 (104), (1979), 478-499. MR 0536071 | Zbl 0429.28011
[8] Dobrakov I.: On integration in Banach spaces, IV. Czech. Math. J. 30 (105), (1980), 259-279. MR 0566051 | Zbl 0452.28006
[9] Dobrakov I.: On integration in Banach spaces,V. Czech.Math.J. 30 (105), (1980), 610-628. MR 0592324 | Zbl 0506.28004
[10] Dobrakov I., Morales P.: On integration in Banach spacees, VI. Czech. Math. J. 35 (110), (1985), 173-187. MR 0787123
[11] Dobrakov I.: On integration in Banach spaces, VII. Czech. Math. J.38(113),(1988),434-449. MR 0950297 | Zbl 0674.28003
[12] Dobrakov I.: On integration in Banach spaces, VIII (Polymeasures). Czech. Math. J. 37 (112), (1987), 487-506. MR 0904773 | Zbl 0688.28002
[13] Dobrakov I.: On integration in Banach spaces, IX (Integration with respect to polymeasures). Czech. Math. J. 38 (113), (1988), 589-601. MR 0962903 | Zbl 0688.28003
[14] Dobrakov I.: On integration in Banach spaces, X (Integration with respect to polymeasures). Czech. Math. J. 38 (113), (1988), 713-725. Zbl 0688.28004
[15] Dobrakov I.: Remarks on the integrability in Banach spaces. Math. Slovaca 36, 1986, 323-327. MR 0866632 | Zbl 0635.28005
[16] Dobrakov I.: On representation oflinear operators on $ХС\sb{0}(Т,X)$. Czech. Math. J. 21 (96), (1971), 13-30. MR 0276804
[17] Dobrakov I.: On Lebesgue pseudonorms on $ХС\sb{0}(Т)$. Math. Slovaca 32, 1982, 327-333. MR 0676567
[18] Dobrakov I.: Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i))$. Czech. Math. J. 39 (114), (1989),288-302. MR 0992135
[19] Dobrakov I.: Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i}, X\sb{i})$. Atti Sem. Mat.Fis. Univ. Modena (to appear).
[20] Dobrakov I.: On extension of vector polymeasures. Czech. Math. J. 38 (113), (1988), 88-94. MR 0925943 | Zbl 0688.28005
[21] Dobrakov I.: On submeasures, I. Dissertationes Math. 112, Warszawa, 1974. MR 0367140 | Zbl 0292.28001
[22] Dobrakov I., Farková J.: On submeasures, II. Math. Slovaca 30, (1980), 65-81. MR 0568216
[23] Jefferies B.: Radon polymeasures. Bull. Austral. Math. Soc. 32, (1985), 207-215. DOI 10.1017/S0004972700009904 | MR 0815364 | Zbl 0577.28002
[24] Kakihara Y.: A note on harmonizable and V-bounded processes. J. Multivariate Anal. 16, (1985), 140-156. DOI 10.1016/0047-259X(85)90055-7 | MR 0778493 | Zbl 0561.60041
[25] Kakihara Y.: Some remarks on Hilbert space valued stochastic processes. Research Activities7,(1985),9-17. MR 0862075
[26] Kakihara Y.: Strongly and weakly harmonizable stochastic processes of H-valued random variables. J. Multivariate Anal. 18, (1986), 127-137. DOI 10.1016/0047-259X(86)90064-3 | MR 0827173 | Zbl 0589.60034
[27] Katsaras A. K.: Bimeasures on topological spaces. Glasnik Matematički 20 (40), (1985), 35-49. MR 0818611 | Zbl 0587.28009
[28] Kluvánek I.: Remarks on bimeasures. Proc. Amer. Math. Soc. 81 (1981), 233 - 239. DOI 10.2307/2044201 | MR 0593464
[29] Merzbach E., Zakai M.: Bimeasures and measures induced by planar stochastic integrators. J. Multivariate Anal. 19, (1986), 67-87. DOI 10.1016/0047-259X(86)90094-1 | MR 0847574
[30] Morse M.: Bimeasures and their integral extensions. Ann. Mat. Pura Appl. (4) 39, (1955), 345-356. DOI 10.1007/BF02410778 | MR 0075273 | Zbl 0066.04202
[31] Morse M., Transue W.: Integral representations ofbilinear functionals. Proc. Nat. Acad. Sci. U.S.A. 35, 1949, 136-143. DOI 10.1073/pnas.35.3.136 | MR 0029478
[32] Morse M., Transue W.: C-bimeasures A and their superior integrals A*. Rend. Circ. Mat. Palermo, (2) 4, (1955), 270-300. DOI 10.1007/BF02854200 | MR 0086115
[33] Morse M., Transue W.: C-bimeasures A and their integral extensions. Ann. of Math. (2) 64, (1956), 480-504. DOI 10.2307/1969597 | MR 0086116
[34] Morse M., Transue W.: The representation ofa bimeasure on a rectangle. Proc. Nat.Acad. Sci. U.S.A., 42, (1956), 89-95. DOI 10.1073/pnas.42.2.89 | MR 0075274
[35] Niemi H.: On the support of a bimeasure and orthogonally scattered vector measures. Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1975), no. 2, 249-275. DOI 10.5186/aasfm.1975.0114 | MR 0399410 | Zbl 0327.28009
[36] Rao M. M.: Harmonizable processes: Structure theory. L'Einseignement math., $II^e$ sér. 28, fasc. 3-4, 1982. MR 0684239 | Zbl 0501.60046
[37] Thomas E.: L'intégration par rapport a une mesure de Radon vectorielle. Ann. Inst. Fourier Grenoble, 20, (1970), 55-191. DOI 10.5802/aif.352 | MR 0463396 | Zbl 0195.06101
[38] Ylinen K.: Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes. Ann. Acad. Sci. Fenn. Ser. A I, 7, (1975),355-385. MR 0399755 | Zbl 0326.43009
[39] YIinen K.: On vector bimeasures. Annali Mat.Pura Appl. (4) 777, (1978), 115-138. MR 0515957
Partner of
EuDML logo