[2] Chang D. K., Rao M. M.:
Bimeasures and nonstationary processes. Real and Stochastic Analysis, 7-118, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986.
MR 0856580 |
Zbl 0616.60009
[3] Diestel J., Uhl J. J.:
Vector measures. Amer. Math. Soc. Surveys, No. 15, Providence, 1977.
MR 0453964 |
Zbl 0369.46039
[4] Diestel J.:
Sequences and Series in Banach spaces. Graduate Texts in Mathematics 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.
MR 0737004
[5] Dobrakov I.:
On integration in Banach spaces, I. Czech. Math. J. 20 (95), (1970), 511 - 536.
MR 0365138 |
Zbl 0215.20103
[6] Dobrakov I.:
On integration in Banach spaces, II. Czech. Math. J. 20 (95), (1970), 680-695.
MR 0365139 |
Zbl 0224.46050
[7] Dobrakov I.:
On integration in Banach spaces, III. Czech. Math. J. 29 (104), (1979), 478-499.
MR 0536071 |
Zbl 0429.28011
[8] Dobrakov I.:
On integration in Banach spaces, IV. Czech. Math. J. 30 (105), (1980), 259-279.
MR 0566051 |
Zbl 0452.28006
[9] Dobrakov I.:
On integration in Banach spaces,V. Czech.Math.J. 30 (105), (1980), 610-628.
MR 0592324 |
Zbl 0506.28004
[10] Dobrakov I., Morales P.:
On integration in Banach spacees, VI. Czech. Math. J. 35 (110), (1985), 173-187.
MR 0787123
[11] Dobrakov I.:
On integration in Banach spaces, VII. Czech. Math. J.38(113),(1988),434-449.
MR 0950297 |
Zbl 0674.28003
[12] Dobrakov I.:
On integration in Banach spaces, VIII (Polymeasures). Czech. Math. J. 37 (112), (1987), 487-506.
MR 0904773 |
Zbl 0688.28002
[13] Dobrakov I.:
On integration in Banach spaces, IX (Integration with respect to polymeasures). Czech. Math. J. 38 (113), (1988), 589-601.
MR 0962903 |
Zbl 0688.28003
[14] Dobrakov I.:
On integration in Banach spaces, X (Integration with respect to polymeasures). Czech. Math. J. 38 (113), (1988), 713-725.
Zbl 0688.28004
[15] Dobrakov I.:
Remarks on the integrability in Banach spaces. Math. Slovaca 36, 1986, 323-327.
MR 0866632 |
Zbl 0635.28005
[16] Dobrakov I.:
On representation oflinear operators on $ХС\sb{0}(Т,X)$. Czech. Math. J. 21 (96), (1971), 13-30.
MR 0276804
[17] Dobrakov I.:
On Lebesgue pseudonorms on $ХС\sb{0}(Т)$. Math. Slovaca 32, 1982, 327-333.
MR 0676567
[18] Dobrakov I.:
Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i))$. Czech. Math. J. 39 (114), (1989),288-302.
MR 0992135
[19] Dobrakov I.: Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i}, X\sb{i})$. Atti Sem. Mat.Fis. Univ. Modena (to appear).
[20] Dobrakov I.:
On extension of vector polymeasures. Czech. Math. J. 38 (113), (1988), 88-94.
MR 0925943 |
Zbl 0688.28005
[22] Dobrakov I., Farková J.:
On submeasures, II. Math. Slovaca 30, (1980), 65-81.
MR 0568216
[25] Kakihara Y.:
Some remarks on Hilbert space valued stochastic processes. Research Activities7,(1985),9-17.
MR 0862075
[27] Katsaras A. K.:
Bimeasures on topological spaces. Glasnik Matematički 20 (40), (1985), 35-49.
MR 0818611 |
Zbl 0587.28009
[32] Morse M., Transue W.:
C-bimeasures A and their superior integrals A*. Rend. Circ. Mat. Palermo, (2) 4, (1955), 270-300.
DOI 10.1007/BF02854200 |
MR 0086115
[36] Rao M. M.:
Harmonizable processes: Structure theory. L'Einseignement math., $II^e$ sér. 28, fasc. 3-4, 1982.
MR 0684239 |
Zbl 0501.60046
[38] Ylinen K.:
Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes. Ann. Acad. Sci. Fenn. Ser. A I, 7, (1975),355-385.
MR 0399755 |
Zbl 0326.43009
[39] YIinen K.:
On vector bimeasures. Annali Mat.Pura Appl. (4) 777, (1978), 115-138.
MR 0515957