[1] V. I. Arnold: 
Geometric Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, New York 1983. 
MR 0695786[2] N. N. Bautin, E. A. Leontovich: Methods and Examples of Qualitative Study of Dynamical Systems in the Plane. Nauka, Moscow 1978 (Russian).
[3] R. I. Bogdanov: 
Versal deformations of a singular point of vector fields in the plane in the case of zero eigenvalues. Selecta Math. Soviet 1 (1981), 389-421 (Proc. of Petrovski Seminar, 2 (1976), 37-65) (Russian). 
MR 0442996[4] R. I. Bogdanov: 
Bifurcations of limit cycles of a certain family of vector fields in the plane. Selecta Math. Soviet 1 (1981), 373-387 (Proc. of Petrovski Seminar 2 (1976), 23-36) (Russian). 
MR 0442988[5] J. Carr: Application of Center Manifold Theory. Springer-Verlag, New York 1981.
[10] G. Dangelmayer, J. Guckenheimer: 
On a four parameter family of plane vector fields. Archive for Rational Mechanics and Analysis, 97 (1987), 321 - 352. 
DOI 10.1007/BF00280410 | 
MR 0865844[11] B. Drachman S. A. Van Gils, Zhang Zhi-Fen: 
Abelian integrals for quadratic vector fields. J. Reine Angew. Math. 382 (1987), 165-180. 
MR 0921170[12] F. Dumortier R. Roussarie, J Sotomayor: 
Generic 3-parameter families of vector fields on the plane. Unfolding a singularity with nilpotent linear part. The cusp-case of codimension 3, Ergodic Theory Dynamical Systems 7 (1987), No. 3, 375-413. 
MR 0912375[13] C. Elpic E. Tirapegni M. Brachet P. Coullet, G. Iooss: 
A simple global characterization of normal forms of singular vector fields. Preprint No. 109, University of Nice, 1986, Physica 29 D (1987), 95-127. 
MR 0923885[14] J. Guckenheimer: 
Multiple bifurcation problems for chemical reactors. Physica 20 D (1986), 1-20. 
MR 0858791 | 
Zbl 0593.34043[15] J. Guckenheimer: 
A condimension two bifurcation with circular symmetry. in "Multiparameter Bifurcation Theory", AMS series: Contemporary Math. 56 (1986), 175-184. 
MR 0855089[16] J. Guckenheimer, P. Holmes: 
Nonlinear Oscillations. Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York 1983. 
MR 0709768 | 
Zbl 0515.34001[17] E. I. Horozov: 
Versal deformation of equivariant vector fields with $Z_2$ or $Z_3$ symmetry. Proc. of Petrovski Seminar 5 (1979), 163-192 (Russian). 
MR 0549627[18] J. K. Hale: 
Introduction to dynamic bifurcation. in "Bifurcation Theory and Applications" (L. Salvadoei, Ed.), pp. 106-151, LNM 1057, Springer-Verlag 1984. 
MR 0753299 | 
Zbl 0544.58016[19] Yu. S. Ilyashenko: 
Multiplicity of limit cycles arising from perturbations of the form $w' = = P_2/Q_1$ of a Hamiltonian equation in the real and complex domain. Amer. Math. Soc. Transl. Vol. 118, No. 2, pp. 191-202, AMS, Providence, R. I., 1982. 
DOI 10.1090/trans2/118/10[20] Yu. S. Ilyashenko: Zeros of special abelian integrals in a real domain. Funct. Anal. Appl. 11 (1977), 309-311.
[21] M. Medved: 
Generic bifurcations of vector fields with a singularity of codimension 2. in "Equadiff 5, Bratislava 1981", Proceedings, Teubner-Texte zur Math., Band 47, Teubner-Verlag 1982, pp. 260-263. 
MR 0715987[22] M. Medved: 
The unfoldings of a germ of vector fields in the plane with a singularity of codimension 3. Czechosl. Math. J. 35 (110), 1 (1985), 1-42. 
MR 0779333 | 
Zbl 0591.58022[23] M. Medved: 
Normal forms and bifurcations of some equivariant vector fields. to appear in Mathematica Slovaca 1990. 
MR 1094774 | 
Zbl 0735.58024[24] M. Medved: 
On a codimension three bifurcations. Časopis pro pěstování matem., 109 (1984), 3-26. 
MR 0741206[27] F. Takens: 
Forced oscillations and bifurcations. in "Applications of Global Analysis", Comment, of Math. Inst. Rijksuniversiteit Ultrecht 1974. 
MR 0478235[29] H. Žoladek: On versality of certain families of symmetric vector fields on the plane. Math. Sb. 120 (1983), 473-499.
[30] H. Žoladek: Abelian integrals in unfolding of codimension 3 singular planar vector fields I. The saddle and elliptic cases, II. The focus case. To appear in Lecture Notes in Math.