Previous |  Up |  Next

Article

Title: An energy analysis of degenerate hyperbolic partial differential equations. (English)
Author: Layton, William J.
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 5
Year: 1984
Pages: 350-366
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region$\Omega$ (E) $(tu_t)_t=\sum_{i,j=1}(a_{ij}(x)u_{x_i})_{x_j} - {a_0(x)u+f(u)}$, subject to the initial and boundary conditions, $u=0$ on $\partial\Omega$ and $u(x,0)=u_0$. (E) is degenerate at $t=0$ and thus, even in the case $f\equiv 0$, time derivatives of $u$ will blow up as $t\rightarrow 0$. Also, in the case where $f$ is locally Lipschitz, solutions of (E) can blow up for $t>0$ in finite time. Stability and convergence of the scheme in $W^{2,1}$ is shown in the linear case without assuming $u_{tt}$ (which can blow up as $t\rightarrow 0$ is smooth. Convergence of the approximation to $u$ is shown in the case where $f$ is nonlinear and locally Lipschitz. The convergence occurs in regions where $u(x,t)$ exists and is smooth. Rates of convergence are given. (English)
Keyword: degenerate equation
Keyword: Lipschitz
Keyword: energy analysis
Keyword: semi-discrete Galerkin method
Keyword: semilinear equation
Keyword: stability
Keyword: convergence
MSC: 35L10
MSC: 35L80
MSC: 65M60
MSC: 65N30
idZBL: Zbl 0564.65073
idMR: MR0772270
DOI: 10.21136/AM.1984.104105
.
Date available: 2008-05-20T18:25:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104105
.
Reference: [1] W. F. Ames: Nonlinear Partial Differential in Engineering.Academic Press, New York, 1965. MR 0210342
Reference: [1a] J. P. Aubin: Applied Functional Analysis.Wiley-Interscience, New York, 1979. Zbl 0424.46001, MR 0549483
Reference: [2] I. Babuska A. K. Aziz: Survey Lectures on the Mathematical Foundations of the Finite Element Method.The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. A. K. Aziz (Editor). Academic Press, New York, 1972. MR 0421106
Reference: [3] G. Baker: Error estimates for finite element methods for second order hyperbolic equations.SIAM J. Numer. Anal., v. 13 (1976), pp. 564-576. MR 0423836, 10.1137/0713048
Reference: [4] G. Baker V. Dougalis: On the $L^\infty$-Convergence of Galerkin approximations for second-order hyperbolic equations.Math. Соmр., v. 34 (1980), pp. 401-424. MR 0559193
Reference: [4a] M. L. Bernardi: Second order abstract differential equatiors with singular coefficients.Ann. Math. Рurа Appl., v. 80 (1982), pp. 257-286. MR 0663974, 10.1007/BF01761498
Reference: [5] J. H. Bramble A. H. Schatz V. Thomée L. Wahlbin: Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equatiors.SIAM J. Numer. Anal., v. 14 (1977), pp. 218-241. MR 0448926, 10.1137/0714015
Reference: [6] B. Cahlon: On the initial value problem for a certain partial differential equation.B. I. T., v. 19 (1979), pp. 164-171. Zbl 0411.65052, MR 0537776
Reference: [7] R. W. Carroll R. E. Showalter: Singular and Degenerate Cauchy Problems.Academic Press, New York, 1976. MR 0460842
Reference: [7a] R. Courant D. Hilbert: Methods of Mathematical Physics.volume 1, Irterscience Publishers, New York.
Reference: [8] J. Douglas, Jr. T. Dupont: Galerkin methods for parabolic equations:.SIAM J. Numer. Anal. v. 7 (1970), pp. 575-626. MR 0277126, 10.1137/0707048
Reference: [9] J. Douglas, Jr. T. Dupont L. Wahlbin: Optimal $L_\infty$ error estimates for Galerkin approximations to two-point boundary value problems.Math. Соmр., v. 29 (1975), pp. 475 - 483. MR 0371077
Reference: [10] T. Dupont: $L^2$-Estimates for Galerkin methods for second order hyperbolic equations.SlAM J. Numer. Anal., v. 10 (1973), pp. 880-889. MR 0349045, 10.1137/0710073
Reference: [11] A. Erdélyi W. Magnus F. Oberhettinger F. G. Tricomi: Higher Transcendental Functions.Volume 3. McGraw-Hill, New York, 1953. MR 0058756
Reference: [11a] G. Fix N. Nassif: On Finite element approximations to time dependent problems.Numer. Math., v. 19 (1972), pp. 127-135. MR 0311122, 10.1007/BF01402523
Reference: [12] J. Frehse R. Rannacher: Asymptotic $L^\infty$-error estimates for linear finite element approximations of Quasilinear boundary value problems.SIAM J. Numer. Anal., v. 15 (1978), pp. 418-431. MR 0502037, 10.1137/0715026
Reference: [13] A. Friedman Z. Schuss: Degenerate evolution equations in Hilbert space.Trans. Amer. Math. Soc., v. 161 (1971), pp. 401-427. MR 0283623, 10.1090/S0002-9947-1971-0283623-9
Reference: [14] A. Genis: On finite element methods for the Euler-Poisson-Darboux equation.SIAM J. Numer. Anal., to appear. Zbl 0576.65112, MR 0765508
Reference: [15] D. Gilbarg N. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1977. MR 0473443
Reference: [16] W. Layton: The finite element method for a degenerate hyperbolic partial differential equation.B.I.T. Zbl 0518.65066
Reference: [16a] W. Layton: Some effects of numerical integration in finite element approximations to degenerate evolution equations.Calcolo, to appear. MR 0799613
Reference: [17] H. A. Levine: On the nonexistence of global solutions to a nonlinear Euler-Poisson-Darboux equation.J. Math. Anal. and Appl., v. 48 (1974), pp. 646-651. Zbl 0291.35063, MR 0352732, 10.1016/0022-247X(74)90137-1
Reference: [18] J. A. Nitsche: $L^\infty$-convergence for finite element approximation.Second Conference on Finite Elements. Rennes, France, May 12-14, 1975. MR 0568857
Reference: [19] J. A. Nitsche: On $L^\infty$-convergence of finite element approximation to the solution of a nonlinear boundary value problem.Topics in Numerical Analysis III, Proc. Roy. Irish Acad. Conf. on Numerical Analysis 1976, J. J. H. Miller (Editor). Academic Press, London, 1977. MR 0513215
Reference: [19a] M. Povoas: On a second order degenerate hyperbolic equation.Boll. Un. Mat. Ital., v. 5, 16A (1979), pp. 349-355. Zbl 0403.35070, MR 0541773
Reference: [20] M. Reed: Abstract Nonlinear Wave Equations.Sprirger Lecture Notes vol. 507, Springer-Verlag, Berlin, 1970.
Reference: [21] R. Scott: Optimal $L^\infty$-estimates for the finite element method on irregular meshes.Math. Соmр., v. 30 (1976), pp. 681-697. MR 0436617
Reference: [22] V. Thomée L. Wahlbin: On Galerkin methods in semilinear parabolic problems.SIAM J. Numer. Anal., v. 12 (1975), pp. 378-389. MR 0395269, 10.1137/0712030
Reference: [22a] A. Weinstein: Singular partial differential equations and their applications.pp. 29-49 in Proc. Symp. Fluid Dyn. Appl. Mat. Gordon-Breach, New York, 1962. Zbl 0142.07303, MR 0153965
Reference: [23] M. Zlámal: The mixed boundary value problem for a hyperbolic equation with a small parameter.Czechoslovak Math. J., v. 10 (1960), pp. 83-122.
Reference: [24] M. Zlámal: The parabolic equation as a limiting case of a certain elliptic equation.Ann. Mat. Рurа Appl., v. 57 (1962), pp. 143-150. MR 0138891, 10.1007/BF02417732
Reference: [25] M. Zlámal: Finite element multistep discretizations of parabolic boundary value problems.Math. Соmр., v. 29 (1975), pp. 350-359. MR 0371105
.

Files

Files Size Format View
AplMat_29-1984-5_5.pdf 2.551Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo