[1] Adam S.: Numerische Verfahren für Variationsungleichungen. Dipl. thesis, TU Dresden, 1992.
[2] Allgower E. L., Böhmer K.:
Application of the independence principle to mesh refinement strategies. SIAM J.Numer.Anal. 24 (1987), 1335-1351.
DOI 10.1137/0724086 |
MR 0917455
[3] Baiocchi C.:
Estimation d'erreur dans $L_{\infty}$ pour les inéquations a obstacle. In Lecture Notes Math., vol. 606, 1977, pp. 27-34.
MR 0488847
[5] Ciarlet P.:
The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[6] Deuflhard P., Potra F. A.:
Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem. Preprint SC 90-9, Konrad-Zuse-Zentrum, Berlin, 1990.
MR 1182736
[8] Grossmann C., Roos H.-G.:
Numerik partieller Differentialgleichungen. Teubner, Stuttgart, 1992.
MR 1219087 |
Zbl 0755.65087
[9] Haslinger J.:
Mixed formulation of elliptic variational inequalities and its approximation. Applikace Mat. 26 (1981), 462-475.
MR 0634283 |
Zbl 0483.49003
[10] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Numerical solution of variational inequalities. Springer, Berlin, 1988.
[11] Windisch G.:
M-matrices in numerical analysis. Teubner, Leipzig, 1989.
MR 1059459