Previous |  Up |  Next

Article

Keywords:
penalty method; obstacle problem; abstract variational problem; inequality constraints; linear finite elements; Newton method; area of contraction
References:
[1] Adam S.: Numerische Verfahren für Variationsungleichungen. Dipl. thesis, TU Dresden, 1992.
[2] Allgower E. L., Böhmer K.: Application of the independence principle to mesh refinement strategies. SIAM J.Numer.Anal. 24 (1987), 1335-1351. DOI 10.1137/0724086 | MR 0917455
[3] Baiocchi C.: Estimation d'erreur dans $L_{\infty}$ pour les inéquations a obstacle. In Lecture Notes Math., vol. 606, 1977, pp. 27-34. MR 0488847
[4] Brezzi F., Fortin M: Mixed and hybrid finite element methods. Springer, Berlin, 1991. MR 1115205 | Zbl 0788.73002
[5] Ciarlet P.: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[6] Deuflhard P., Potra F. A.: Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem. Preprint SC 90-9, Konrad-Zuse-Zentrum, Berlin, 1990. MR 1182736
[7] Grossmann C. , Kaplan A. A.: On the solution of discretized obstacle problems by an adapted penalty method. Computing 35 (1985), 295-306. DOI 10.1007/BF02240196 | MR 0825117 | Zbl 0569.65050
[8] Grossmann C., Roos H.-G.: Numerik partieller Differentialgleichungen. Teubner, Stuttgart, 1992. MR 1219087 | Zbl 0755.65087
[9] Haslinger J.: Mixed formulation of elliptic variational inequalities and its approximation. Applikace Mat. 26 (1981), 462-475. MR 0634283 | Zbl 0483.49003
[10] Hlaváček I., Haslinger J., Nečas J., Lovíšek J.: Numerical solution of variational inequalities. Springer, Berlin, 1988.
[11] Windisch G.: M-matrices in numerical analysis. Teubner, Leipzig, 1989. MR 1059459
Partner of
EuDML logo