[1] D. GAŞPAR N. SUCIU:
On the structure of isometric semigroups. Operator Theory: Adv. and Appl. 14, Birkhäuser Verlag Basel, 1984, 125-139.
MR 0789613
[2] D. GAŞPAR N. SUCIU: Intertwinings of isometric semigroups and Wold type decompositions. Sem. de operatori liniari si analiză armonică, No. 3, 1985.
[3] P. R. HALMOS:
Introduction to Hilbert apace and the theory of spectral multiplicity. Chelsea Publishing Comp. New York, 1951.
MR 0045309
[6] H. HELSON D. LOWDENSLAGER:
Prediction theory and Fourier series, in several variables II. Acta Math. 106 (1961), 175-213.
MR 0176287
[7] O. KALLIAMPUR V. MANDREKAR:
Nondeterministic random fields and Wold and Halmoa decompositions for commuting isometries. Prediction Theory and Harmonic Analysis, North Holland Publ. Comp., 1983, 165-190.
MR 0708524
[8] M. KOSIEK:
Lebesgue-type decompositions of a pair of commuting Hilbert space operators. Bull. Acad. Polon. Sci., Ser. Math. 27 (1979), 583-589.
MR 0581556 |
Zbl 0462.47015
[9] P. S. MUHLY:
A structure theory for isometric representations of a class of semigroups. J. Reine und angew. Math. 225 (1972), 135-154.
MR 0390804 |
Zbl 0244.47030
[10] M. SLOCIŃSKI:
On the Wold-type decomposition of a pair of commuting isometries. Annales Polonici Math. 37 (1980), 255-262.
MR 0587496
[11] M. SLOCIŃSKI: Models of commuting contractions and isometries. Report of the 11th Conference on Operator Theory Bucharest 1986 (to appear).
[12] I. SUCIU:
On the semigroups of isometries. Studia Math. 30 (1968), 101-110.
MR 0229093