[1] Berndt, J. and Vanhecke, L.: 
Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. 
MR 1244456 
[2] Blair, D. E.: 
Contact manifolds in Riemannian geometry. Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . 
MR 0467588 | 
Zbl 0319.53026 
[3] Blair, D. E., Koufogiorgos, T., and Sharma, R.: 
A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$. Kodai Math.J. 13 (1990), 391-401. 
MR 1078554 
[4] Blair, D. E. and Sharma, R.: 
Three-dimensional locally symmetric contact metric manifolds. to appear in Boll.Un.Mat.Ital.. 
MR 1083268 
[5] Blair, D. E. and Vanhecke, L.: 
Symmetries and $\phi $-symmetric spaces. Tôhoku Math.J. 39 (1987), 373-383. 
MR 0902576 
[6] Cartan, E.: 
Lecons sur la géométrie des espaces de Riemann, 2nd éd. Gauthier-Villars, Paris (1946). 
MR 0020842 
[7] Cho, J. T.: 
On some classes of almost contact metric manifolds. Tsukuba J. Math. 19 (1995), 201-217. 
MR 1346762 | 
Zbl 0835.53054 
[8] Cho, J. T.: 
On some classes of contact metric manifolds. Rend.Circ.Mat. Palermo XLIII (1994), 141–160. 
MR 1305332 | 
Zbl 0817.53019 
[9] Cho, J. T.: Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces. Niigata Univ. Doctorial Thesis  (1994), .
[11] Takahashi, T.: 
Sasakian $\phi $-symmetric spaces. Tôhoku Math. J. 29 (1977), 91-113. 
MR 0440472 
[12] Tanaka, N.: 
On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1976), 131-190. 
MR 0589931 | 
Zbl 0346.32010 
[13] Tanno, S.: 
Ricci curvature of contact Riemannian manifolds. Tôhoku Math. J. 40 (1988), 441-448. 
MR 0957055 
[14] Tanno, S.: 
Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314 (1989), 349-379. 
MR 1000553 | 
Zbl 0677.53043 
[15] Tricerri, F. and Vanhecke, L.: 
Homogeneous structures on Riemannian manifolds. London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London  (1983), . 
MR 0712664