Previous |  Up |  Next

Article

Title: Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$ (English)
Author: Guha, Partha
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 4
Year: 2000
Pages: 305-312
Summary lang: English
.
Category: math
.
Summary: The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric. (English)
Keyword: Bott-Virasoro Group
Keyword: Ito equation
MSC: 35Q53
MSC: 37K10
MSC: 37K65
MSC: 58D05
idZBL: Zbl 1049.37045
idMR: MR1811175
.
Date available: 2008-06-06T22:26:25Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107745
.
Reference: [1] Antonowicz M., Fordy A.: Coupled KdV equation with multi-Hamiltonian structures.Physica 28D (1987), 345–357. MR 0914454
Reference: [2] Arbarello E., De Concini C., Kac V. G., Procesi C.: Moduli space of curves and representation theory.Comm. Math. Phys. 117 (1988), 1–36. MR 0946992
Reference: [3] Arnold V. I.: Mathematical methods of classical mechanics.Second edition, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1989. MR 0997295
Reference: [4] Camassa R., Holm D.: A completely integrable dispersiveshallow water equation with peaked solutions.Phys. Rev. Lett. 71 (1993), 1661–1664. MR 1234453
Reference: [5] Cendra H., Holm D., Marsden J., Ratiu T.: Lagrangian reduction, the Euler-Poincar’e equations and semidirect products.to appear in the AMS Arnold Volume II, and all other references therein.
Reference: [6] Ebin D., Marsden J.: Groups of diffeomorphisms and themotion of an incompressible fluid.Ann. Math. 92 (1970), 102–163. MR 0271984
Reference: [7] Guha P.: Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems.IHES/M/98/69.
Reference: [8] Harnad J., Kupershmidt B. A.: Symplectic geometries on $T^{\ast }G$, Hamiltonian group actions and integrable systems.J. Geom. Phys. 16 (1995), 168-206. Zbl 0829.53027, MR 1330839
Reference: [9] Ito M.: Symmetries and conservation laws of a coupled nonlinear wave equation.Phys. Lett. 91A (1982), 335–338. MR 0670869
Reference: [10] Kirillov A. A.: Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments.Lect. Notes in Math. 970 (1982), Springer-Verlag, 101–123. Zbl 0498.22017, MR 0699803
Reference: [11] Kirillov A. A.: Orbits of the group of diffeomorphisms of a circle and local superalgebras.Func. Anal. Appl. 15 (1980), 135–137.
Reference: [12] Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group.Math-ph/9807021. Zbl 0958.37060
Reference: [13] Marcel P., Ovsienko V., Roger C.: Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouvilleoperators.Lett. Math. Phys. 40 (1997), 31–39. MR 1445965
Reference: [14] Misiolek G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group.J. Geom. Phys. 24 (1998), 203–208. Zbl 0901.58022, MR 1491553
Reference: [15] Ovsienko V. Yu., Khesin B. A.: KdV super equation as an Euler equation.Funct. Anal. Appl. 21 (1987), 329–331. MR 0925082
Reference: [16] Ovsienko V. Yu., Rogers C.: Extension of Virasoro group and Virasoro algebra by modules of tensor densities on $S^1$.Func. Anal. Appl.
Reference: [17] Shkoller S.: Geometry and the curvature of diffeomorphismgroups with $H^1$ metric and mean hydrodynamics.Math. AP/9807078.
Reference: [18] Segal G.: Unitary representations of some infinite dimensional groups.Comm. Math. Phys. 80 (1981), 301–342. Zbl 0495.22017, MR 0626704
.

Files

Files Size Format View
ArchMathRetro_036-2000-4_8.pdf 354.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo