Previous |  Up |  Next

Article

Title: The Tanaka-Webster connection for almost $\mathcal{S}$-manifolds and Cartan geometry (English)
Author: Lotta, Antonio
Author: Pastore, Anna Maria
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 1
Year: 2004
Pages: 47-61
Summary lang: English
.
Category: math
.
Summary: We prove that a CR-integrable almost $\mathcal S$-manifold admits a canonical linear connection, which is a natural generalization of the Tanaka–Webster connection of a pseudo-hermitian structure on a strongly pseudoconvex CR manifold of hypersurface type. Hence a CR-integrable almost $\mathcal S$-structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost $\mathcal S$-structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal almost $\mathcal S$-manifolds with higher CR-codimension, whose Tanaka–Webster curvature vanishes. (English)
Keyword: almost $\mathcal S$-structure
Keyword: Tanaka–Webster connection
Keyword: Cartan connection
Keyword: CR manifold
MSC: 32V05
MSC: 53B05
MSC: 53C10
MSC: 53C15
MSC: 53C25
idZBL: Zbl 1114.53022
idMR: MR2054872
.
Date available: 2008-06-06T22:42:54Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107890
.
Reference: [1] Alekseevsky D. V., Michor P. W.: Differential Geometry of Cartan connections.Publ. Math. Debrecen 47 (1995), 349–375. Zbl 0857.53011, MR 1362298
Reference: [2] Blair D. E.: Contact manifolds in Riemannian Geometry.Lecture Notes in Math. 509, 1976, Springer–Verlag. Zbl 0319.53026, MR 0467588
Reference: [3] Blair D. E.: Geometry of manifolds with structural group ${\mathcal{U}}(n)\times {\mathcal{O}}(s)$.J. Differential Geom. 4 (1970), 155–167. MR 0267501
Reference: [4] Duggal K. L., Ianus S., Pastore A. M.: Maps interchanging $f$-structures and their harmonicity.Acta Appl. Math. 67 (2001), 91–115. Zbl 1030.53048, MR 1847885
Reference: [5] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. I.Interscience, New-York, 1963. MR 0152974
Reference: [6] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. II.Interscience, New-York, 1969. Zbl 0175.48504, MR 0238225
Reference: [7] Lotta A.: Cartan connections on $CR$ manifolds.PhD Thesis, University of Pisa, 2000. Zbl 1053.32507
Reference: [8] Mizner R. I.: Almost CR structures, $f$-structures, almost product structures and associated connections.Rocky Mountain J. Math. 23, no. 4 (1993), 1337–1359. Zbl 0806.53030, MR 1256452
Reference: [9] Sharpe R. W.: Differential geometry. Cartan’s generalization of Klein’s Erlangen program.Graduate Texts in Mathematics 166, Springer-Verlag, New York, 1997. Zbl 0876.53001, MR 1453120
Reference: [10] Tanaka N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Japan. J. Math. 20 (1976), 131–190. Zbl 0346.32010, MR 0589931
Reference: [11] Tanno S.: Variational problems on contact Riemannian manifolds.Trans. Amer. Math. Soc., Vol. 314 (1989), 349–379. Zbl 0677.53043, MR 1000553
Reference: [12] Tanno S.: The automorphism groups of almost contact Riemannian manifolds.Tohoku Math. J. 21 (1969), 21–38. Zbl 0188.26705, MR 0242094
Reference: [13] Urakawa H.: Yang-Mills connections over compact strongly pseudoconvex CR manifolds.Math. Z. 216 (1994), 541–573. Zbl 0815.32008, MR 1288045
Reference: [14] Webster S. M.: Pseudo-hermitian structures on a real hypersurface.J. Differential Geom. 13 (1978), 25–41. Zbl 0379.53016, MR 0520599
Reference: [15] Yano K.: On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3+f=0$.Tensor (N.S.) 14 (1963), 99–109. MR 0159296
.

Files

Files Size Format View
ArchMathRetro_040-2004-1_6.pdf 272.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo