[1] Alonso R. J.: 
Decomposition of higher order tangent fields and calculus of variations. Proc. Diff. Geom. Appl. (Brno, 1998), 451–460, Masaryk Univ., Brno, 1999.  
MR 1708934[2] Alonso R. J.: 
$D$-modules, contact valued calculus and Poincaré-Cartan form. Czechoslovak Math. J. 49 (124) (3) (1999), 585–606.  
MR 1708350 | 
Zbl 1011.58011[3] Anderson J. L., Bergmann P. G.: 
Constraints in covariant field theories. Phys. Rev. 83 (5) (1951), 1018–1025.  
MR 0044382 | 
Zbl 0045.45505[4] Allemandi G., Fatibene L., Ferraris M., Francaviglia M., Raiteri M.: 
Nöther conserved quantities and entropy in general relativity. In: Recent Developments in General Relativity, Genoa 2000; R. Cianci et al. eds., Springer Italia, Milano (2001), 75–92.  
MR 1852664 | 
Zbl 1202.83039[6] Bergmann P. G.: 
Conservation laws in general relativity as the generators of coordinate transformations. Phys. Rev. 112 (1) (1958), 287–289.  
MR 0099236[7] Chruściel P. T.: 
On the relation between the Einstein and the Komar expressions for the energy of the gravitational field. Ann. Inst. H. Poincaré 42 (3) (1985), 267–282.  
MR 0797276 | 
Zbl 0645.53063[8] Eck D. J.: 
Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981), 1–48.  
MR 0632164 | 
Zbl 0493.53052[9] Fatibene L., Francaviglia M., Raiteri M.: 
Gauge natural field theories and applications to conservation laws. Proc. VIII Conf. Differential Geom. Appl., O. Kowalski et al. eds.; Silesian University at Opava, Opava (Czech Republic) 2001, 401–413.  
MR 1978794 | 
Zbl 1026.70027[10] Fatibene L., Francaviglia M., Palese M.: 
Conservation laws and variational sequences in gauge-natural theories. Math. Proc. Cambridge Philos. Soc. 130 (2001), 555–569.  
MR 1816809 | 
Zbl 0988.58006[11] Ferraris M., Francaviglia M.: 
The Lagrangian approach to conserved quantities in general relativity. In: Mechanics, Analysis and Geometry: 200 Years after Lagrange; M. Francaviglia ed.; Elsevier Science Publishers B. V. (Amsterdam, 1991), 451–488.  
MR 1098527 | 
Zbl 0717.53060[12] Ferraris M., Francaviglia M., Raiteri M.: 
Conserved quantities from the equations of motion (with applications to natural and gauge natural theories of gravitation). Classical Quantum Gravity 20 (2003), 4043–4066.  
MR 2017333[13] Francaviglia M., Palese M.: 
Second order variations in variational sequences. Steps in Differential Geometry (Debrecen, 2000) Inst. Math. Inform. Debrecen, Hungary (2001), 119–130.  
MR 1859293 | 
Zbl 0977.58019[14] Francaviglia M., Palese M.: 
Generalized Jacobi morphisms in variational sequences. In: Proc. XXI Winter School Geometry and Physics, Srní 2001, Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 195–208.  
MR 1972435 | 
Zbl 1028.58022[15] Francaviglia M., Palese M., Vitolo R.: 
Symmetries in finite order variational sequences. Czechoslovak Math. J. 52 (127) (2002), 197–213.  
MR 1885465 | 
Zbl 1006.58014[16] Francaviglia M., Palese M., Vitolo R.: 
Superpotentials in variational sequences. Proc. VII Conf. Differential Geom. Appl., Satellite Conf. of ICM in Berlin (Brno 1998); I. Kolář et al. eds.; Masaryk University in Brno (Czech Republic) 1999, 469–480.  
MR 1708936[17] Francaviglia M., Palese M., Vitolo R.: 
The Hessian and Jacobi morphisms for higher order calculus of variations. Differential Geom. Appl. 22 (1) (2005), 105–120.  
MR 2106379 | 
Zbl 1065.58010[18] Godina M., Matteucci P.: 
Reductive $G$-structures and Lie derivatives. J. Geom. Phys. 47 (1) (2003), 66–86.  
MR 1985484 | 
Zbl 1035.53035[19] Goldberg J. N.: 
Conservation laws in general relativity. Phys. Rev. (2) 111 (1958), 315–320.  
MR 0099235 | 
Zbl 0089.20903[20] Goldschmidt H., Sternberg S.: 
The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267.  
MR 0341531 | 
Zbl 0243.49011[21] Horák M., Kolář I.: 
On the higher order Poincaré-Cartan forms. Czechoslovak Math. J. 33 (108) (1983), 467–475.  
Zbl 0545.58004[22] Janyška J.: 
Natural and gauge-natural operators on the space of linear connections on a vector bundle. Proc. Differential Geom. Appl. (Brno, 1989); J Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 58–68.  
MR 1062006[23] Janyška J.: 
Reduction theorems for general linear connections. Differential Geom. Appl. 20 (2004), no. 2, 177–196.  
MR 2038554[24] Janyška J., Modugno M.: 
Infinitesimal natural and gauge-natural lifts. Differential Geom. Appl. 2 (2) (1992), 99–121.  
MR 1245551 | 
Zbl 0780.53023[25] Julia B., Silva S.: 
Currents and superpotentials in classical gauge theories, II, Global Aspects and the example of affine gravity. Classical Quantum Gravity 17 (22) (2000), 4733–4743.  
MR 1797968 | 
Zbl 0988.83026[26] Katz J.: 
A note on Komar’s anomalous factor. Classical Quantum Gravity 2 (3) (1985), 423–425.  
MR 0792031[27] Kolář I.: 
On some operations with connections. Math. Nachr. 69 (1975), 297–306.  
MR 0391157[28] Kolář I.: 
Prolongations of generalized connections. Coll. Math. Soc. János Bolyai, (Differential Geometry, Budapest, 1979) 31 (1979), 317–325.  
MR 0706928[29] Kolář I.: 
A geometrical version of the higher order Hamilton formalism in fibred manifolds. J. Geom. Phys. 1 (2) (1984), 127–137.  
MR 0794983[30] Kolář I.: 
Some geometric aspects of the higher order variational calculus. Geom. Meth. in Phys., Proc. Diff. Geom. and its Appl., (Nové Město na Moravě, 1983); D. Krupka ed.; J. E. Purkyně University (Brno, 1984), 155–166.  
MR 0793206[31] Kolář I.: 
Natural operators related with the variational calculus. Proc. Differential Geom. Appl. (Opava, 1992), 461–472, Math. Publ. 1 Silesian Univ. Opava, Opava, 1993.  
MR 1255562[32] Kolář I., Michor P. W., Slovák J.: 
Natural operations in differential geometry. Springer-Verlag, N.Y., 1993.  
MR 1202431 | 
Zbl 0782.53013[33] Kolář I., Virsik G.: 
Connections in first principal prolongations. In: Proc. XVI Winter School Geometry and Physics, Srní 1995, Rend. Circ. Mat. Palermo (2), Suppl. 43 (1995), 163–171.  
MR 1463518[34] Kolář I., Vitolo R.: 
On the Helmholtz operator for Euler morphisms. Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 277–290.  
MR 2006065 | 
Zbl 1048.58012[35] Komar A.: 
Covariant conservation laws in general relativity. Phys. Rev. 113 (3) (1959), 934–936.  
MR 0102403 | 
Zbl 0086.22103[36] Krupka D.: 
Variational sequences on finite order jet spaces. Proc. Diff. Geom. and its Appl. (Brno, 1989), J. Janyška, D. Krupka eds.; World Scientific (Singapore, 1990), 236–254.  
MR 1062026[37] Krupka D.: 
Topics in the calculus of variations: finite order variational sequences. O. Kowalski and D. Krupka eds., Proc. Differential Geom. and its Appl. (Opava, 1992), Math. Publ. 1, Silesian Univ. Opava, Opava, 1993, 473–495.  
MR 1255563[38] Mangiarotti L., Modugno M.: 
Fibered spaces, jet spaces and connections for field theories. In: Proc. Int. Meet. Geom. Phys.; M. Modugno ed.; Pitagora Editrice (Bologna, 1983), 135–165.  
MR 0760841 | 
Zbl 0539.53026[39] Nöther E.: Invariante variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918), 235–257. 
[40] Palese M.: Geometric foundations of the calculus of variations. Variational sequences, symmetries and Jacobi morphisms. Ph.D. Thesis, University of Torino (2000). 
[43] Trautman A.: 
Conservation laws in general relativity. In Gravitation: An introduction to current research, pp. 169–198, Wiley, New York 1962.  
MR 0143627[44] Trautman A.: 
Noether equations and conservation laws. Comm. Math. Phys. 6 (1967), 248–261.  
MR 0220470 | 
Zbl 0172.27803[45] Trautman A.: 
A metaphysical remark on variational principles. Acta Phys. Polon. B XX (1996), 1–9.  
MR 1388335 | 
Zbl 0966.58503[46] Vitolo R.: 
Finite order Lagrangian bicomplexes. Math. Proc. Camb. Phil. Soc. 125 (1) (1999), 321–333.   
MR 1643802