Previous |  Up |  Next

Article

Title: Some properties on the closed subsets in Banach spaces (English)
Author: Maaden, Abdelhakim
Author: Stouti, Abdelkader
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 167-174
Summary lang: English
.
Category: math
.
Summary: It is shown that under natural assumptions, there exists a linear functional does not have supremum on a closed bounded subset. That is the James Theorem for non-convex bodies. Also, a non-linear version of the Bishop-Phelps Theorem and a geometrical version of the formula of the subdifferential of the sum of two functions are obtained. (English)
Keyword: James Theorem
Keyword: Bishop-Phelps Theorem
Keyword: smooth variational principles
MSC: 46B20
MSC: 49J52
idZBL: Zbl 1164.46307
idMR: MR2240354
.
Date available: 2008-06-06T22:47:50Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107993
.
Reference: [1] Azagra D., Deville R.: James’ theorem fails for starlike bodies.J. Funct. Anal. 180 (2) (2001), 328–346. Zbl 0983.46016, MR 1814992
Reference: [2] Bishop E., Phelps R. R.: The support cones in Banach spaces and their applications.Adv. Math. 13 (1974), 1–19. MR 0338741
Reference: [3] Deville R., El Haddad E.: The subdifferential of the sum of two functions in Banach spaces, I. First order case.J. Convex Anal. 3 (2) (1996), 295–308. MR 1448058
Reference: [4] Deville R., Godefroy G., Zizler V.: A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions.J. Funct. Anal. 111 (1993), 197–212. Zbl 0774.49021, MR 1200641
Reference: [5] Deville R., Maaden A.: Smooth variational principles in Radon-Nikodým spaces.Bull. Austral. Math. Soc. 60 (1999), 109–118. Zbl 0956.49003, MR 1702818
Reference: [6] Diestel J.: Geometry of Banach spaces - Selected topics.Lecture Notes in Math., Berlin – Heidelberg – New York 485 (1975). Zbl 0307.46009, MR 0461094
Reference: [7] Fabian M., Mordukhovich B. S.: Separable reduction and extremal principles in variational analysis.Nonlinear Anal. 49 (2) (2002), 265–292. Zbl 1061.49015, MR 1885121
Reference: [8] Haydon R.: A counterexample in several question about scattered compact spaces.Bull. London Math. Soc. 22 (1990), 261–268. MR 1041141
Reference: [9] Ioffe A. D.: Proximal analysis and approximate subdifferentials.J. London Math. Soc. (2) 41 (1990), 175–192. Zbl 0725.46045, MR 1063554
Reference: [10] James R. C.: Weakly compact sets.Trans. Amer. Math. Soc. 113 (1964), 129–140. Zbl 0129.07901, MR 0165344
Reference: [11] Leduc M.: Densité de certaines familles d’hyperplans tangents.C. R. Acad. Sci. Paris, Sér. A 270 (1970), 326–328. Zbl 0193.10801, MR 0276733
Reference: [12] Mordukhovich B. S.: Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems.Sov. Math. Dokl. 22 (1980), 526–530. Zbl 0491.49011
Reference: [13] Mordukhovich B. S., Shao Y. H.: Extremal characterizations of Asplund spaces.Proc. Amer. Math. Soc. 124 (1) (1996), 197–205. Zbl 0849.46010, MR 1291788
Reference: [14] Mordukhovich B. S., Shao Y. H.: Nonsmooth sequential analysis in Asplund spaces.Trans. Amer. Math. Soc. 348 (4) (1996), 1235–1280. Zbl 0881.49009, MR 1333396
Reference: [15] Phelps R. R.: Convex functions, Monotone Operators and Differentiability.Lecture Notes in Math., Berlin – Heidelberg – New York – London – Paris – Tokyo 1364 (1991).
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_8.pdf 206.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo