Previous |  Up |  Next

Article

Title: Some aspects of the homogeneous formalism in field theory and gauge invariance (English)
Author: Palese, Marcella
Author: Winterroth, Ekkehart
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 319-327
Summary lang: English
.
Category: math
.
Summary: We propose a suitable formulation of the Hamiltonian formalism for Field Theory in terms of Hamiltonian connections and multisymplectic forms where a composite fibered bundle, involving a line bundle, plays the role of an extended configuration bundle. This new approach can be interpreted as a suitable generalization to Field Theory of the homogeneous formalism for Hamiltonian Mechanics. As an example of application, we obtain the expression of a formal energy for a parametrized version of the Hilbert–Einstein Lagrangian and we show that this quantity is conserved. (English)
Keyword: jets
Keyword: connections
Keyword: homogeneous formalism
Keyword: Hamilton equations
Keyword: energy
Keyword: gravity
MSC: 53Cxx
MSC: 58Exx
MSC: 70G45
MSC: 70S05
idZBL: Zbl 1164.53332
idMR: MR2322418
.
Date available: 2008-06-06T22:50:03Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108038
.
Reference: [1] Bureš J., Vanžura J.: Unified treatment of multisymplectic 3-forms in dimension 6.preprint arXiv:math.DG/0405101.
Reference: [2] Cabras A., Kolář I.: Connections on some functional bundles.Czechoslovak Math. J. 45 (120) (1995), 529–548. Zbl 0851.58007, MR 1344519
Reference: [3] Crnković C., Witten E.: Covariant description of canonical formalism in geometrical theories.Three hundred years of gravitation, Cambridge Univ. Press, Cambridge (1987), 676–684. Zbl 0966.81533, MR 0920461
Reference: [4] Dedecker P.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations.Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Math. 570, Springer, Berlin, 1977, 395–456. MR 0458478
Reference: [5] De León M., Marrero J. C., Martin de Diego D.: A new geometric setting for classical field theories.Classical and quantum integrability (Warsaw, 2001); Banach Center Publ. 59, Polish Acad. Sci., Warsaw, (2003), 189–209. MR 2003724
Reference: [6] Echeverria-Enriquez A., De León M., Munoz-Lecanda M. C., Roman-Roy N.: Hamiltonian systems in multisymplectic field theories.preprint arXiv:math-ph/0506003; Zbl 1152.81420
Reference: [7] Francaviglia M., Palese M., Winterroth E.: A new geometric proposal for the Hamiltonian description of classical field theories.Proc. VIII Int. Conf. Differential Geom. Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 415–424. Zbl 1109.70310, MR 1978795
Reference: Francaviglia M., Palese M., Winterroth E.: A general geometric setting for the energy of the gravitational field.Inst. Phys. Conf. Ser. 176, I. Ciufolini et al. eds., Taylor & Francis 2005, 391-395.
Reference: [8] Giachetta G., Mangiarotti L., Sardanashvili G.: New Lagrangian and Hamiltonian Methods in Field Theory.World Scientific, Singapore, 1997. MR 2001723
Reference: [9] Goldschmidt H., Sternberg S.: The Hamilton–Cartan formalism in the calculus of variations.Ann. Inst. Fourier, Grenoble 23 (1) (1973), 203–267. Zbl 0243.49011, MR 0341531
Reference: [10] Grabowska K., Kijowski J.: Canonical gravity and canonical energy.Proc. VIII Int. Conf. Differential Geometry and Appl. (Opava, Czech Republic August 27–31, 2001) O. Kowalski, D. Krupka and J. Slovak eds., 2001 Silesian University in Opava, 261–274. MR 1978783
Reference: [11] Hélein F., Kouneiher J.: Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl.Adv. Theor. Math. Phys. 8 (3) (2004), 565–601. Zbl 1115.70017, MR 2105190
Reference: [12] Hélein F., Kouneiher J.: The notion of observable in the covariant Hamiltonian formalism for the calculus of variations with several variables.Adv. Theor. Math. Phys. 8 (4) (2004), 735–777. Zbl 1113.70023, MR 2141500
Reference: [13] Kanatchikov I. V.: Canonical structure of classical field theory in the polymomentum phase space.Rep. Math. Phys. 41 (1) (1998), 49–90. Zbl 0947.70020, MR 1617894
Reference: [14] Kanatchikov I. V.: Precanonical quantum gravity: quantization without the space-time decomposition.Internat. J. Theoret. Phys. 40 (6) (2001), 1121–1149. Zbl 0984.83026, MR 1834872
Reference: [15] Kijowski J.: A finite-dimensional canonical formalism in the classical field theory.Comm. Math. Phys. 30 (1973), 99–128. MR 0334772
Reference: [16] Kijowski J.: Multiphase spaces and gauge in the calculus of variations.Bull. Acad. Polon. Sciences, Math. Astr. Phys. XXII (12) (1974), 1219–1225. Zbl 0302.49024, MR 0370653
Reference: [17] Kijowski J., Szczyrba W.: A canonical structure for classical field theories.Comm. Math. Phys. 46 (2) (1976), 183–206. Zbl 0348.49017, MR 0406247
Reference: [18] Kijowski J., Tulczyjew W. M.: A symplectic framework for field theories.Lecture Notes in Phys. 107, Springer-Verlag, Berlin-New York, 1979. Zbl 0439.58002, MR 0549772
Reference: [19] Kolář I.: A geometrical version of the higher order Hamilton formalism in fibred manifolds.J. Geom. Phys. 1 (2) (1984), 127–137. MR 0794983
Reference: [20] Krupková O.: Hamiltonian field theory.J. Geom. Phys. 43 (2002), 93–132. Zbl 1016.37033
Reference: [21] Mangiarotti L., Sardanashvily G.: Gauge Mechanics.World Scientific, Singapore, 1998. MR 1689375
Reference: [22] Mangiarotti L., Sardanashvily G.: Connections in classical and quantum field theory.World Scientific, Singapore, 2000. Zbl 1053.53022, MR 1764255
Reference: [23] Panák M., Vanžura J.: 3-forms and almost complex structures on 6-dimensional manifolds.preprint arXiv:math.DG/0305312.
Reference: [24] Rey A. M., Roman-Roy N., Salgado M.: Gunther’s formalism $(k$-symplectic formalism$)$ in classical field theory: Skinner-Rusk approach and the evolution operator.J. Math. Phys. 46 (2005), 052901, 24pp. MR 2143001
Reference: [25] Rey A. M., Roman-Roy N., Salgado M.: k-cosymplectic formalism in classical field theory: the Skinner–Rusk approach.preprint arXiv:math-ph/0602038.
Reference: [26] Sardanashvily G.: Generalized Hamiltonian formalism for field theory. Constraint systems.World Scientific, Singapore, 1995. MR 1376141
Reference: [27] Sardanashvily G.: Hamiltonian time–dependent mechanics.J. Math. Phys. 39 (5) (1998), 2714–2729. Zbl 1031.70508, MR 1621455
Reference: [28] Saunders D. J.: The geometry of jet bundles.Cambridge University Press, Cambridge, 1989. Zbl 0665.58002, MR 0989588
Reference: [29] Winterroth E.: A $K$–theory for certain multisymplectic vector bundles.Proc. VIII Int. Conf. Differential Geometry and Appl., O. Kowalski et al. eds., 2001 Silesian University in Opava, 153–162. Zbl 1034.55001, MR 1978772
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_19.pdf 226.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo