Previous |  Up |  Next

Article

Title: The geometry of Newton's law and rigid systems (English)
Author: Modugno, Marco
Author: Vitolo, Raffaele
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 3
Year: 2007
Pages: 197-229
Summary lang: English
.
Category: math
.
Summary: We start by formulating geometrically the Newton’s law for a classical free particle in terms of Riemannian geometry, as pattern for subsequent developments. For constrained systems we have intrinsic and extrinsic viewpoints, with respect to the environmental space. Multi–particle systems are modelled on $n$-th products of the pattern model. We apply the above scheme to discrete rigid systems. We study the splitting of the tangent and cotangent environmental space into the three components of center of mass, of relative velocities and of the orthogonal subspace. This splitting yields the classical components of linear and angular momentum (which here arise from a purely geometric construction) and, moreover, a third non standard component. The third projection yields a new explicit formula for the reaction force in the nodes of the rigid constraint. (English)
Keyword: classical mechanics
Keyword: rigid system
Keyword: Newton’s law
Keyword: Riemannian geometry
MSC: 37Jxx
MSC: 70B10
MSC: 70Bxx
MSC: 70Exx
MSC: 70Fxx
MSC: 70G45
idZBL: Zbl 1164.70014
idMR: MR2354808
.
Date available: 2008-06-06T22:51:20Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108065
.
Reference: [1] Abraham R., Marsden J.: Foundations of Mechanics.Benjamin, New York, 1986.
Reference: [2] Arnol’d V. I.: Mathematical methods of classical mechanics.MIR, Moscow 1975; GTM n. 70, Springer. MR 0997295
Reference: [3] Cortizo S. F.: Classical mechanics–on the deduction of Lagrange’s equations.Rep. Math. Phys. 29, No. 1 (1991), 45–54. Zbl 0744.70024, MR 1137498
Reference: [4] Crampin M.: Jet bundle techniques in analytical mechanics.Quaderni del CNR, GNFM, Firenze, 1995.
Reference: [5] Curtis W. D., Miller F. R.: Differentiable manifolds and theoretical physics.Academic Press, New York, 1985. MR 0793015
Reference: [6] de Leon M., Rodriguez P. R.: Methods of differential geometry in analytical mechanics.North Holland, Amsterdam, 1989. MR 1021489
Reference: [7] Gallot S., Hulin D., Lafontaine J.: Riemannian Geometry.II ed., Springer Verlag, Berlin, 1990. Zbl 0716.53001, MR 1083149
Reference: [8] Godbillon C.: Geometrie differentielle et mechanique analytique.Hermann, Paris, 1969. Zbl 0174.24602, MR 0242081
Reference: [9] Goldstein H.: Classical Mechanics.II ed., Addison–Wesley, London, 1980. Zbl 0491.70001, MR 0575343
Reference: [10] Guillemin V., Sternberg S.: Symplectic techniques in physics.Cambridge Univ. Press, 1984. Zbl 0576.58012, MR 0770935
Reference: [11] Janyška J., Modugno M., Vitolo R.: Semi–vector spaces.preprint 2005.
Reference: [12] Landau L., Lifchits E.: Mechanics.MIR, Moscow 1975.
Reference: [13] Levi–Civita T., Amaldi U.: Lezioni di Meccanica Razionale.vol. II, II ed., Zanichelli, Bologna, 1926.
Reference: [14] Libermann P. Marle C.-M.: Symplectic geometry and analytical mechanics.Reidel, Dordrecht, 1987. MR 0882548
Reference: [15] Lichnerowicz A.: Elements of tensor calculus.John Wiley & Sons, New York, 1962. Zbl 0103.38402, MR 0149903
Reference: [16] Littlejohn R. G., Reinsch M.: Gauge fields in the separation of rotations and internal motions in the $n$–body problem.Rev. Modern Phys. 69, 1 (1997), 213–275. MR 1432649
Reference: [17] Marsden J. E., Ratiu T.: Introduction to Mechanics and Symmetry.Texts Appl. Math. 17, Springer, New York, 1995. MR 1723696
Reference: [18] Massa E., Pagani E.: Classical dynamics of non–holonomic systems: a geometric approach.Ann. Inst. H. Poincaré 55, 1 (1991), 511–544. Zbl 0731.70012, MR 1130215
Reference: [19] Massa E., Pagani E.: Jet bundle geometry, dynamical connections and the inverse problem of Lagrangian mechanics.Ann. Inst. H. Poincaré (1993).
Reference: [20] Modugno M., Tejero Prieto C., Vitolo R.: A covariant approach to the quantisation of a rigid body.preprint 2005.
Reference: [21] Park F. C., Kim M. W.: Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies.Z. Angew. Math. Phys. 51 (2000), 820–834. Zbl 0998.70004, MR 1788187
Reference: [22] Souriau J.-M.: Structure des systèmes dynamiques.Dunod, Paris 1969. MR 0260238
Reference: [23] Tulczyjew W. M.: An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics.J. Geom. Phys. 2, 3 (1985), 93–105. Zbl 0601.70001, MR 0851123
Reference: [24] Vershik A. M., Faddeev L. D.: Lagrangian mechanics in invariant form.Sel. Math. Sov. 4 (1981), 339–350.
Reference: [25] Warner F. W.: Foundations of differentiable manifolds and Lie groups.Scott, Foresman and Co., Glenview, Illinois, 1971. Zbl 0241.58001, MR 0295244
Reference: [26] Whittaker E. T.: A treatise on the analytical dynamics of particles and rigid bodies.Wiley, New York, 1936.
.

Files

Files Size Format View
ArchMathRetro_043-2007-3_6.pdf 406.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo