Article
Keywords:
nonlinear Dirichlet problem; classical solution; bifurcation point; ordinary differential equation
Summary:
We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u  \text{ in }  (0,\infty ), \, u(0)=0  \text{ and }  \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$.
References:
                        
[2] Berger M.S.: 
On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Analysis 9 (1972), 249-261. 
MR 0299966 | 
Zbl 0224.35061[3] Brezis H., Kato T.: 
Remarks on the Schrödinger operator with singular complex potentials. J. Math. pures et appl. 58 (1979), 137-151. 
MR 0539217 | 
Zbl 0408.35025[4] Gilbarg D., Trudinger N.S.: 
Elliptic Partial Differential Equations of Second Order. SpringerVerlag, Berlin, Heidelberg, New York, 1983. 
MR 0737190 | 
Zbl 1042.35002[5] Hörmander L.: 
Linear Partial Differential Operators. Springer-Verlag, Berlin, Heidelberg, New York, 1976. 
MR 0404822[6] Stuart C.A.: 
Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. (3) 45 (1982), 169-192. 
MR 0662670 | 
Zbl 0505.35010