[1] H. Bauer: Нaгmonisсhе Räumе und ihrе Potеntialthеoriе. Springег Vегlag, Bеrlin, 1966.
[2] S. Dümmel: On invеrsе pгoblеms for k-dimеnsional potеntials. Nonlinеar ҽvolution еquations and potеntial thеory (pp. 73-93), Aсadеmia, Praha, 1975.
[3] G. C. Evans: The logarithmic potential. (Discontinuous Dirichlet and Neumann problems), AMM Colloquium Publications, VI, New York, 1927.
[4] G. A. Garrett:
Necessary and sufficient conditions for potentials of single and double layers. Amer. J. Math. 58 (1936), 95-129.
MR 1507136 |
Zbl 0013.26603
[6] R. A. Hunt, R. L. Wheeden:
Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147 (1970), 507-527.
MR 0274787 |
Zbl 0193.39601
[7] D. V. Kapánadze, I. N. Karcivadze:
Potentials in a domain with noncompact boundary. (Russian), Thbilis. Sahelmc. Univ. Gamoqeneb. Math. Inst. Šrom. 2 (1969), 13-19.
MR 0276486
[8] J. Král:
The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547.
MR 0209503
[9] J. Král, J. Mařík:
Integration with respect to the Hausdorff measure over a smooth surface. (Czech), Časopis Pěst. Mat. 89 (1964), 433-448.
MR 0181730
[10] J. Matyska:
Approximate differential and Federer normal. Czech. Math. J. 17 (92) (1967), 97-107.
MR 0207926 |
Zbl 0162.07601
[11] I. Netuka:
Generalized Robin problem in potential theory. Czech. Math. J. 22 (97) (1972), 312-324.
MR 0294673 |
Zbl 0241.31008
[12] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czech. Math. J. 22 (97) (1972), 462-489.
MR 0316733 |
Zbl 0241.31009
[13] I. Netuka:
The third boundary value problem in potential theory. Czech. Math. J. 22 (97) (1972), 554-580.
MR 0313528 |
Zbl 0242.31007
[14] I. Netuka:
Fredholm radius of a potential theoretic operator for convex sets. Časopis Pěst. Mat. 100 (1975), 374-383.
MR 0419794 |
Zbl 0314.31006
[15] E. D. Solomencev: Harmonic functions representable by Green's type integrals II. (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 834-854.
[16] Ch. de la Vallé Poussin: Le potential logarithmique. Gauthier-Villars, Paris, 1949.