Previous |  Up |  Next

Article

References:
[1] H. Bauer: Нaгmonisсhе Räumе und ihrе Potеntialthеoriе. Springег Vегlag, Bеrlin, 1966.
[2] S. Dümmel: On invеrsе pгoblеms for k-dimеnsional potеntials. Nonlinеar ҽvolution еquations and potеntial thеory (pp. 73-93), Aсadеmia, Praha, 1975.
[3] G. C. Evans: The logarithmic potential. (Discontinuous Dirichlet and Neumann problems), AMM Colloquium Publications, VI, New York, 1927.
[4] G. A. Garrett: Necessary and sufficient conditions for potentials of single and double layers. Amer. J. Math. 58 (1936), 95-129. MR 1507136 | Zbl 0013.26603
[5] L. L. Helms: Introduction to potential theory. Wiley-Interscience, New York, 1969. MR 0261018 | Zbl 0188.17203
[6] R. A. Hunt, R. L. Wheeden: Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147 (1970), 507-527. MR 0274787 | Zbl 0193.39601
[7] D. V. Kapánadze, I. N. Karcivadze: Potentials in a domain with noncompact boundary. (Russian), Thbilis. Sahelmc. Univ. Gamoqeneb. Math. Inst. Šrom. 2 (1969), 13-19. MR 0276486
[8] J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503
[9] J. Král, J. Mařík: Integration with respect to the Hausdorff measure over a smooth surface. (Czech), Časopis Pěst. Mat. 89 (1964), 433-448. MR 0181730
[10] J. Matyska: Approximate differential and Federer normal. Czech. Math. J. 17 (92) (1967), 97-107. MR 0207926 | Zbl 0162.07601
[11] I. Netuka: Generalized Robin problem in potential theory. Czech. Math. J. 22 (97) (1972), 312-324. MR 0294673 | Zbl 0241.31008
[12] I. Netuka: An operator connected with the third boundary value problem in potential theory. Czech. Math. J. 22 (97) (1972), 462-489. MR 0316733 | Zbl 0241.31009
[13] I. Netuka: The third boundary value problem in potential theory. Czech. Math. J. 22 (97) (1972), 554-580. MR 0313528 | Zbl 0242.31007
[14] I. Netuka: Fredholm radius of a potential theoretic operator for convex sets. Časopis Pěst. Mat. 100 (1975), 374-383. MR 0419794 | Zbl 0314.31006
[15] E. D. Solomencev: Harmonic functions representable by Green's type integrals II. (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 834-854.
[16] Ch. de la Vallé Poussin: Le potential logarithmique. Gauthier-Villars, Paris, 1949.
Partner of
EuDML logo