Previous |  Up |  Next

Article

Keywords:
perturbed Cauchy problem; semi-inner product; measure of noncompactness
Summary:
We consider a perturbed Cauchy problem like the following $$ {\hbox{\rm (PCP)}} \cases x' = A(t,x) +B(t,x) \ x(0)=x_0 \endcases $$ and we present two results showing that (PCP) has a solution. In some cases, our theorems are more general than the previous ones obtained by other authors (see [4], [8], [9], [11], [13], [17], [18]).
References:
[1] Ambrosetti: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Univ. Padova 39 (1967), 349-360. MR 0222426
[2] Crandall M., Pazy A.: Nonlinear equations in Banach spaces. Israel J. Math. 11 (1972), 87-94. MR 0300166
[3] Deimling K.: Ordinary Differential Equations in Banach Spaces. Lecture Notes in Math. 596, Springer Verlag 1977. MR 0463601 | Zbl 0418.34060
[4] Deimling K.: Open Problems for Ordinary Differential Equations in B-Spaces. Proceeding Equa-Diff. 1978, 127-137. MR 0690603
[5] Diestel J., Uhl J.J., jr.: Vector Measures. Amer. Math. Soc. 1977. MR 0453964 | Zbl 0521.46035
[6] Dinculeanu N.: Vector Measures. Pergamon Press 1967. MR 0206190 | Zbl 0647.60062
[7] Dunford N., Schwartz J.T.: Linear Operators. part I, Interscience 1957. Zbl 0635.47003
[8] Emmanuele G.: On a theorem of R.H. Martin on certain Cauchy problems for ordinary differential equations. Proc. Japan Acad. 61 (1985), 207-210. MR 0816713 | Zbl 0578.34003
[9] Emmanuele G.: Existence of approximate solutions for O.D.E.'s under Carathéodory assumptions in closed, convex sets of Banach spaces. Funkcialaj Ekvacioj, to appear.
[10] Evans L.C.: Nonlinear evolution equations in an arbitrary Banach space. Israel J. Math. 26 (1977), 1-42. MR 0440431 | Zbl 0349.34043
[11] Hu Shou Chuan: Ordinary differential equations involving perturbations in Banach spaces. J. Nonlinear Analysis, TMA 7 (1983), 933-940. MR 0713206
[12] Kato T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967), 508-520. MR 0226230 | Zbl 0163.38303
[13] Martin R.H.: Remarks on ordinary differential equations involving dissipative and compact operators. J. London Math. Soc. 10 (1975), 61-65. MR 0369849 | Zbl 0305.34092
[14] Martin R.H.: Nonlinear operators and differential equations in Banach spaces. Wiley and Sons 1976. MR 0492671 | Zbl 0333.47023
[15] Pierre M.: Enveloppe d'une famille de semi-groups dans un espace de Banach. C.R. Acad. Sci. Paris 284 (1977), 401-404. MR 0440432
[16] Ricceri B., Villani A.: Separability and Scorza-Dragoni's property. Le Matematiche 37 (1982), 156-161. MR 0791334
[17] Schechter E.: Evolution generated by continuous dissipative plus compact operators. Bull. London Math. Soc. 13 (1981), 303-308. MR 0620042 | Zbl 0443.34061
[18] Volkmann P.: Ein Existenzsatz für gewöhnliche differentialgleichungen in Banachräumen. Proc. Amer. Math. Soc. 80 (1980), 297-300. MR 0577763 | Zbl 0506.34051
Partner of
EuDML logo