[1] Betancor J.J.:
The Hankel-Schwartz transform for functions of compact support. Rend. Mat. Appl. 7 (3-4) (1987), 399-409.
MR 0986009
[2] Betancor J.J.:
A mixed Parseval's equation and a generalized Hankel transformation of distributions. Can. J. Math. XLI (2) (1989), 274-284.
MR 1001612 |
Zbl 0666.46046
[3] Churchill R.V.:
Fourier Series and Boundary Value Problems. McGraw Hill, New York, 1963.
MR 0149173 |
Zbl 0378.42001
[4] Cinelli G.:
An extension of the finite Hankel transform and applications. Int. J. Engng. 3 (1965), 539-559.
MR 0194853 |
Zbl 0151.17102
[5] Dube L.S.:
On finite Hankel transformation of generalized functions. Pacific J. Math. 62 (1976), 365-378.
MR 0410365 |
Zbl 0329.46044
[6] Gelfand I.M., Shilov G.E.:
Generalized functions. Vol. III, Academic Press, New York, 1967.
MR 0217416
[7] Liu S.H.:
Method of generalized finite Hankel transform. Z. Angew. Math. Mech. 51 (1971), 311-313.
MR 0284772
[8] Méndez J.M.:
A mixed Parseval equation and the generalized Hankel transformation. Proc. Amer. Math. Soc. 102 (1988), 619-624.
MR 0928991
[9] Méndez J.M.:
The finite Hankel-Schwartz transform. J. Korean Math. Soc. 26 (1) (1989), 647-655.
MR 1005866
[10] Méndez J.M., Negrín J.R.:
Fourier Bessel series expansions of generalized functions and finite Hankel transforms of distributions. Rev. Roum. de Math. Pures et Appl. XXXIV (7) (1989), 647-655.
MR 1023593
[11] Pandey J.N., Pathak R.S.:
Eigenfunction expansion of generalized functions. Nagoya Math. J. 72 (1978), 1-25.
MR 0514887 |
Zbl 0362.34018
[12] Pathak R.S.:
Orthogonal series representations for generalized functions. J. Math. Anal. Appl. 130 (1988), 316-333.
MR 0929938 |
Zbl 0647.46037
[13] Pathak R.S., Singh O.P.:
Finite Hankel transforms of distributions. Pacific J. Math. 99 (1982), 439-458.
MR 0658074 |
Zbl 0484.46039
[14] Sneddon I.N.:
On finite Hankel transforms. Phil. Mag. (7) 17 (1946), 16-25.
MR 0018263
[15] Sneddon I.N.:
The Use of Integral Transforms. Tata McGraw Hill, New Delhi, 1979.
Zbl 0237.44001
[16] Titchmarsh E.C.: A class of expansions in series of Bessel functions. Proc. London Math. Soc. (2) 22 (1924), xiii-xvi.
[17] Watson G.N.:
Theory of Bessel Functions. 2nd ed., Cambridge University Press, Cambridge, 1958.
Zbl 0849.33001
[18] Zemanian A.H.:
Orthonormal series expansions of certain distributions and distributional transform calculus. J. Math. Anal. Appl. 14 (1966), 263-275.
MR 0211259 |
Zbl 0138.37804
[19] Zemanian A.H.:
Generalized Integral Transformations. Interscience Publishers, New York, 1968.
MR 0423007 |
Zbl 0643.46029