Previous |  Up |  Next

Article

Keywords:
finite Hankel transformation; distribution; Parseval equation
Summary:
In this paper, we study the finite Hankel transformation on spaces of ge\-ne\-ra\-lized functions by developing a new procedure. We consider two Hankel type integral transformations $h_\mu $ and $h_\mu ^{\ast }$ connected by the Parseval equation $$ \sum_{n=0}^{\infty }(h_\mu f)(n)(h_\mu ^{\ast } \varphi )(n)= \int_{0}^{1}f(x)\varphi (x)\, dx. $$ A space $S_\mu $ of functions and a space $L_\mu $ of complex sequences are introduced. $h_\mu ^{\ast }$ is an isomorphism from $S_\mu $ onto $L_\mu $ when $\mu \geq -\frac{1}{2}$. We propose to define the generalized finite Hankel transform $h'_\mu f$ of $f\in S'_\mu $ by $$ \langle (h'_\mu f), ((h_\mu ^{\ast } \varphi )(n))_{n=0}^{\infty }\rangle =\langle f,\varphi \rangle, \quad \text{for } \varphi \in S_\mu . $$
References:
[1] Betancor J.J.: The Hankel-Schwartz transform for functions of compact support. Rend. Mat. Appl. 7 (3-4) (1987), 399-409. MR 0986009
[2] Betancor J.J.: A mixed Parseval's equation and a generalized Hankel transformation of distributions. Can. J. Math. XLI (2) (1989), 274-284. MR 1001612 | Zbl 0666.46046
[3] Churchill R.V.: Fourier Series and Boundary Value Problems. McGraw Hill, New York, 1963. MR 0149173 | Zbl 0378.42001
[4] Cinelli G.: An extension of the finite Hankel transform and applications. Int. J. Engng. 3 (1965), 539-559. MR 0194853 | Zbl 0151.17102
[5] Dube L.S.: On finite Hankel transformation of generalized functions. Pacific J. Math. 62 (1976), 365-378. MR 0410365 | Zbl 0329.46044
[6] Gelfand I.M., Shilov G.E.: Generalized functions. Vol. III, Academic Press, New York, 1967. MR 0217416
[7] Liu S.H.: Method of generalized finite Hankel transform. Z. Angew. Math. Mech. 51 (1971), 311-313. MR 0284772
[8] Méndez J.M.: A mixed Parseval equation and the generalized Hankel transformation. Proc. Amer. Math. Soc. 102 (1988), 619-624. MR 0928991
[9] Méndez J.M.: The finite Hankel-Schwartz transform. J. Korean Math. Soc. 26 (1) (1989), 647-655. MR 1005866
[10] Méndez J.M., Negrín J.R.: Fourier Bessel series expansions of generalized functions and finite Hankel transforms of distributions. Rev. Roum. de Math. Pures et Appl. XXXIV (7) (1989), 647-655. MR 1023593
[11] Pandey J.N., Pathak R.S.: Eigenfunction expansion of generalized functions. Nagoya Math. J. 72 (1978), 1-25. MR 0514887 | Zbl 0362.34018
[12] Pathak R.S.: Orthogonal series representations for generalized functions. J. Math. Anal. Appl. 130 (1988), 316-333. MR 0929938 | Zbl 0647.46037
[13] Pathak R.S., Singh O.P.: Finite Hankel transforms of distributions. Pacific J. Math. 99 (1982), 439-458. MR 0658074 | Zbl 0484.46039
[14] Sneddon I.N.: On finite Hankel transforms. Phil. Mag. (7) 17 (1946), 16-25. MR 0018263
[15] Sneddon I.N.: The Use of Integral Transforms. Tata McGraw Hill, New Delhi, 1979. Zbl 0237.44001
[16] Titchmarsh E.C.: A class of expansions in series of Bessel functions. Proc. London Math. Soc. (2) 22 (1924), xiii-xvi.
[17] Watson G.N.: Theory of Bessel Functions. 2nd ed., Cambridge University Press, Cambridge, 1958. Zbl 0849.33001
[18] Zemanian A.H.: Orthonormal series expansions of certain distributions and distributional transform calculus. J. Math. Anal. Appl. 14 (1966), 263-275. MR 0211259 | Zbl 0138.37804
[19] Zemanian A.H.: Generalized Integral Transformations. Interscience Publishers, New York, 1968. MR 0423007 | Zbl 0643.46029
Partner of
EuDML logo