[1] Bérard Bergery L.: 
Les espaces homogènes riemanniens de dimension $4$. Géométrie riemannienne en dimension 4, Séminaire A. Besse, Cedic, Paris, 1981, 40-60. 
MR 0769130[2] Derdziński A.: preprint. 
[3] Gromov M.: Partial differential equations. Ergeb. Math. Grenzgeb. 3 Folge 9, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[4] Jensen G.: 
Homogeneous Einstein spaces in dimension four. J. Differential Geom. 3 (1969), 309-349. 
MR 0261487[5] Kowalski O.: 
A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolinae 30 (1989), 85-88. 
MR 0995705 | 
Zbl 0679.53043[6] Kowalski O., Tricerri F., Vanhecke L.: 
Exemples nouveaux de variétés riemanniennes non- homogènes dont le tenseur de courbure est celui d'un espace symétrique riemannien. C.R. Acad. Sci. Paris Sér. I 311 (1990), 355-360. 
MR 1071643[7] Kowalski O., Tricerri F., Vanhecke L.: 
Curvature homogeneous Riemannian manifolds. J. Math. Pures Appl., to appear. 
MR 1193605 | 
Zbl 0836.53029[8] Kowalski O., Tricerri F., Vanhecke L.: 
Curvature homogeneous spaces with a solvable Lie group as homogeneous model. to appear. 
MR 1167378 | 
Zbl 0762.53031[9] Sekigawa K.: 
On the Riemannian manifolds of the form $B\times _f F$. Kōdai Math. Sem. Rep. 26 (1975), 343-347. 
MR 0438253 | 
Zbl 0304.53019[10] Sekigawa K.: 
On some $3$-dimensional curvature homogeneous spaces. Tensor N.S. 31 (1977), 87-97. 
MR 0464115 | 
Zbl 0356.53016[11] Singer M.I.: 
Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. 
MR 0131248 | 
Zbl 0171.42503[12] Takagi H.: 
On curvature homogeneity of Riemannian manifolds. Tôhoku Math. J. 26 (1974), 581-585. 
MR 0365417 | 
Zbl 0302.53022[13] Tricerri F., Vanhecke L.: 
Curvature homogeneous Riemannian manifolds. Ann. Sci. Ecole Norm. Sup. 22 (1989), 535-554. 
MR 1026749 | 
Zbl 0698.53033