Previous |  Up |  Next

Article

Title: $F_\sigma $-absorbing sequences in hyperspaces of subcontinua (English)
Author: Gladdines, Helma
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 4
Year: 1993
Pages: 729-745
.
Category: math
.
Summary: Let $\Cal D$ denote a true dimension function, i.e., a dimension function such that $\Cal D(\Bbb R^n) = n$ for all $n$. For a space $X$, we denote the hyperspace consisting of all compact connected, non-empty subsets by $C(X)$. If $X$ is a countable infinite product of non-degenerate Peano continua, then the sequence $(\Cal D_{\geq n}(C(X)))_{n=2}^\infty$ is $F_\sigma$-absorbing in $C(X)$. As a consequence, there is a homeomorphism $h: C(X)\rightarrow Q^\infty$ such that for all $n$, $h[\{A \in C(X) : \Cal D(A) \geq n+1\}] = B^n \times Q \times Q \times \dots $, where $B$ denotes the pseudo boundary of the Hilbert cube $Q$. It follows that if $X$ is a countable infinite product of non-degenerate Peano continua then $\Cal D_{\geq n}(C(X))$ is an $F_\sigma$-absorber (capset) for $C(X)$, for every $n \geq 2$. Let $\operatorname{dim}$ denote covering dimension. It is known that there is an example of an everywhere infinite dimensional Peano continuum $X$ that contains arbitrary large $n$-cubes, such that for every $k \in \Bbb N$, the sequence $(\operatorname{dim}_{\geq n}(C(X^k)))_{n=2}^\infty$ is not $F_\sigma$-absorbing in $C(X^k)$. So our result is in some sense the best possible. (English)
Keyword: Hilbert cube
Keyword: absorbing system
Keyword: $F_\sigma$
Keyword: $F_{\sigma \delta}$
Keyword: capset
Keyword: Peano continuum
Keyword: hyperspace
Keyword: hyperspace of subcontinua
Keyword: covering dimension
Keyword: cohomological dimension
MSC: 54B20
MSC: 54F15
MSC: 54F45
MSC: 55M10
MSC: 57N20
idZBL: Zbl 0813.57020
idMR: MR1263802
.
Date available: 2009-01-08T18:07:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118630
.
Reference: [1] Bessaga C., Pełczyński A.: Selected topics in infinite-dimensional topology.PWN, Warszawa, 1975.
Reference: [2] Bing R.H.: Partitioning a set.Bull. Amer. Math. Soc. 55 (1949), 1101-1110. Zbl 0036.11702, MR 0035429
Reference: [3] Curtis D.W.: Boundary sets in the Hilbert cube.Top. Appl. 20 (1985), 201-221. Zbl 0575.57008, MR 0804034
Reference: [4] Curtis D.W., Nhu N.T.: Hyperspaces of finite subsets which are homeomorphic to $\aleph _0$-dimensional linear metric space.Top. Appl. 19 (1985), 251-260. MR 0794488
Reference: [5] Curtis D.W., Michael M.: Boundary sets for growth hyperspaces.Top. Appl. 25 (1987), 269-283. Zbl 0627.54004, MR 0889871
Reference: [6] Gladdines H., van Mill J.: Hyperspaces of infinite-dimensional compacta.Comp. Math. 88 (1993), 143-153. Zbl 0830.57013, MR 1237918
Reference: [7] Gladdines H.: $F_\sigma $-absorbing sequences in hyperspaces of compact sets.Bull. Pol. Ac. Sci. vol 40 (3) (1992). MR 1401869
Reference: [8] Gladdines H., Baars J., van Mill J.: Absorbing systems in infinite-dimensional manifolds.Topology Appl. 50 (1993), 147-182. Zbl 0794.57005, MR 1217483
Reference: [9] Dobrowolski T., Rubin L.R.: The hyperspace of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic.preprint, to appear. MR 1267500
Reference: [10] Dijkstra J.J., van Mill J., Mogilski J.: The space of infinite-dimensional compact spaces and other topological copies of $(\ell _f^2)^ømega $.Pac. J. Math. 152 (1992), 255-273. MR 1141795
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-4_12.pdf 288.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo