Previous |  Up |  Next

Article

Keywords:
semi-symmetric spaces; Jacobi operators; $\frak C$- and $\frak P$-spaces
Summary:
We determine explicitly the local structure of a semi-symmetric $\frak P$-space.
References:
[BePV] Berndt J., Prüfer F., Vanhecke L.: Symmetric-like Riemannian manifolds and geodesic symmetries. Proc. Royal Soc. Edingurgh, Sect. A, to appear. MR 1331561
[BeV1] Berndt J., Vanhecke L.: Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. MR 1244456 | Zbl 0747.53013
[BeV2] Berndt J., Vanhecke L.: Geodesic spheres and generalizations of symmetric spaces. Boll. Un. Nat. Ital. 7-A (1993), 125-134. MR 1215106 | Zbl 0778.53043
[BeV3] Berndt J., Vanhecke L.: Geodesic sprays and $\frak C$- and $\frak P$-spaces. Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 343-358. MR 1261447
[B1] Boeckx E.: Einstein-like semi-symmetric spaces. Arch. Math. (Brno) 29 (1993), 235-240. MR 1263125 | Zbl 0807.53041
[B2] Boeckx E.: Asymptotically foliated semi-symmetric spaces. preprint, 1993. MR 1369387 | Zbl 0846.53031
[BKV] Boeckx E., Kowalski O., Vanhecke L.: Non-homogeneous relatives of symmetric spaces. Diff. Geom. Appl., to appear. Zbl 0796.53046
[C] Cho J.T.: Natural generalizations of locally symmetric spaces. Indian J. Pure Appl. Math. 24 (1993), 231-240. MR 1218533 | Zbl 0772.53029
[K] Kowalski O.: An explicit classification of $3$-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. preprint, 1991. MR 1408298 | Zbl 0879.53014
[Sz1] Szabó Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version. J. Diff. Geom. 17 (1982), 531-582. MR 0683165
[Sz2] Szabó Z.I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65-108. MR 0797152
Partner of
EuDML logo