Article
Keywords:
semi-symmetric spaces; Jacobi operators; $\frak C$- and $\frak P$-spaces
Summary:
We determine explicitly the local structure of a semi-symmetric $\frak P$-space.
References:
[BePV] Berndt J., Prüfer F., Vanhecke L.:
Symmetric-like Riemannian manifolds and geodesic symmetries. Proc. Royal Soc. Edingurgh, Sect. A, to appear.
MR 1331561
[BeV1] Berndt J., Vanhecke L.:
Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80.
MR 1244456 |
Zbl 0747.53013
[BeV2] Berndt J., Vanhecke L.:
Geodesic spheres and generalizations of symmetric spaces. Boll. Un. Nat. Ital. 7-A (1993), 125-134.
MR 1215106 |
Zbl 0778.53043
[BeV3] Berndt J., Vanhecke L.:
Geodesic sprays and $\frak C$- and $\frak P$-spaces. Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 343-358.
MR 1261447
[BKV] Boeckx E., Kowalski O., Vanhecke L.:
Non-homogeneous relatives of symmetric spaces. Diff. Geom. Appl., to appear.
Zbl 0796.53046
[C] Cho J.T.:
Natural generalizations of locally symmetric spaces. Indian J. Pure Appl. Math. 24 (1993), 231-240.
MR 1218533 |
Zbl 0772.53029
[K] Kowalski O.:
An explicit classification of $3$-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. preprint, 1991.
MR 1408298 |
Zbl 0879.53014
[Sz1] Szabó Z.I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version. J. Diff. Geom. 17 (1982), 531-582.
MR 0683165
[Sz2] Szabó Z.I.:
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65-108.
MR 0797152