Previous |  Up |  Next

Article

Keywords:
Booleanization; uniform frame; uniform space; weakly open maps and homomorphisms
Summary:
Booleanization of frames or uniform frames, which is not functorial under the basic choice of morphisms, becomes functorial in the categories with weakly open homomorphisms or weakly open uniform homomorphisms. Then, the construction becomes a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with this, certain dual equivalences concerning uniform spaces and uniform frames arise.
References:
[1] Banaschewski B.: Compact regular frames and the Sikorski Theorem. Kyungpook J. Math. 28 (1988), 1-14. MR 0986848 | Zbl 0676.03029
[2] Banaschewski B., Pultr A.: Samuel compactification and completion of uniform frames. Math. Proc. Cambridge Phil. Soc. 108 (1990), 63-78. MR 1049760 | Zbl 0733.54020
[3] Banaschewski B., Pultr A.: A Stone duality for metric spaces. Canad. Math. Soc. Conf. Proceedings 13 (1992), 33-42. MR 1192138 | Zbl 0789.54035
[4] Banaschewski B., Pultr A.: Variants of openness. Appl. Categ. Structures 2 (1994), 331-350. MR 1300720 | Zbl 0810.54017
[5] Banaschewski B., Pultr A.: Booleanization. preprint. MR 1383446 | Zbl 0848.06010
[6] Glivenko V.: Sur quelque points de la logique de M. Brouwer. Acad. Royal Belg. Bull. Sci. 15 (1929), 183-188.
[7] Herrlich H., Strecker G.E.: H-closed spaces and reflective subcategories. Math. Annalen 177 (1968), 302-309. MR 0234427 | Zbl 0157.29104
[8] Isbell J.R.: Atomless parts of spaces. Math. Scand. 31 (1972), 5-32. MR 0358725 | Zbl 0246.54028
[9] Johnstone P.T.: Stone Spaces. Cambridge University Press, Cambridge, 1982. MR 0698074 | Zbl 0586.54001
[10] Johnstone P.T.: Factorization theorems for geometric morphisms, II. Springer Lecture Notes in Math. 915 (1982), 216-233. MR 0659894 | Zbl 0477.18006
[11] Kříž I.: A direct description of uniform completion in locales and a characterization of LT groups. Cahiers Top. et Géom. Diff. Cat. 27 (1986), 19-34. MR 0845407
[12] Mioduszewski J., Rudolf L.: H-closed and extremally disconnected Hausdorff spaces. Dissertationes Math. 66 (1969). MR 0256353 | Zbl 0204.22404
[13] Vickers S.: Topology via Logic. Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985. MR 1002193 | Zbl 0922.54002
Partner of
EuDML logo