Previous |  Up |  Next

Article

Keywords:
steady compressible Navier-Stokes equations; Poisson-Stokes equations; weak solutions; global existence of weak solutions; div-curl lemma; Hardy spaces; Triebel-Lizorkin spaces
Summary:
In [18]–[19], P.L. Lions studied (among others) the compactness and regularity of weak solutions to steady compressible Navier-Stokes equations in the isentropic regime with arbitrary large external data, in particular, in bounded domains. Here we investigate the same problem, combining his ideas with the method of decomposition proposed by Padula and myself in [29]. We find the compactness of the incompressible part $u$ of the velocity field $v$ and we give a new proof of the compactness of the ``effective pressure'' ${\Cal P} = \rho ^\gamma - (2\mu _1 +\mu _2) \operatorname{div} v$. We derive some new estimates of these quantities in Hardy and Triebel-Lizorkin spaces.
References:
[1] Adams R.A.: Sobolev spaces. Academic Press, 1975. MR 0450957
[2] Beirao da Veiga H.: An $L^p$-theory for the $n$-dimensional stationary compressible Navier- Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys. 109 (1987), 229-248. MR 0880415
[3] Bogovskij M.E.: Solutions of some problems of vector analysis with the operators div and grad. Trudy Sem. S.L. Soboleva (1980), 5-41.
[4] Cattabriga L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961), 308-340. MR 0138894 | Zbl 0116.18002
[5] Coifman R., Lions P.L., Meyer Y., Semmes S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. 72 (1993), 247-286. MR 1225511 | Zbl 0864.42009
[6] Di Perna R.J., Lions P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511-547. MR 1022305
[7] Farwig R.: Stationary solutions of the Navier-Stokes equations for a compressible viscous and heat-conductive fluid. preprint, Univ. Bonn, 1988.
[8] Farwig R.: Stationary solutions of the Navier-Stokes equations with slip boundary conditions. Comm. Part. Diff. Eqs. 14 (1989), 1579-1606. MR 1026775
[9] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, Springer, 1994. MR 1284205 | Zbl 0949.35005
[10] Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II, Springer, 1994. MR 1284206 | Zbl 0949.35005
[11] Galdi G.P., Novotný A., Padula M.: About steady compressible flows in 2D exterior domains. Pacif. Journal Math., in press.
[12] Grubb G., Kokholm N.J: Parameter dependent pseudodifferential boundary value problems in anisotropic $L^p$ Sobolev spaces with applications to Navier-Stokes problem. Acta. Math., in press.
[13] Grubb G.: Pseudodifferential boundary value problems in $L^p$-spaces. Comm. Part. Diff. Eq. 15 (1990), 289-340.
[14] Johnsen J.E.: The stationary Navier-Stokes equations in $L^p$-spaces. Ph.D. Theses, Math. Inst. Copenhagen, 1993.
[15] Kufner A., Fučík S., John O.: Function Spaces. Academia, Prague, 1977. MR 0482102
[16] Leray J.: Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933), 1-82.
[17] Leray J.: Sur le mouvement d'une liquide visqueux emplisant l'espace. Acta Math. 63 (1934), 193-248. MR 1555394
[18] Lions P.L.: Compacité des solutions des équations de Navier-Stokes compressibles isentropiques. C.R. Acad. Sci. Paris 317 (Serie I) (1993), 115-120. MR 1228976 | Zbl 0781.76072
[19] Lions P.L.: Existence globale de solutions pour les équations de Navier-Stokes compressibles isentropiques. C.R. Acad. Sci. Paris 316 (Serie I) (1993), 1335-1340. MR 1226126 | Zbl 0778.76086
[20] Lions P.L.: Private communication.
[21] Lions J.L.: Quelques méthodes de resolution des problemes aux limites nonlinéaires. Mir, 1972 (in Russian), French original: Dunod, 1969.
[22] Matsumura A., Nishida T.: Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids. Proc. EQUADIFF 89, eds. Dafermos C.M., Ladas G., Papanicolau G., Dekker publ., 1989, pp. 473-479. MR 1021749 | Zbl 0679.76076
[23] Matsumura A., Nishida T.: Exterior stationary problems for the equations of motion of compressible viscous and heat-conductive fluids. manuscript in Japanese. Zbl 0679.76076
[24] Matsumura A., Nishida T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm. Math. Phys. 89 (1983), 445-464. MR 0713680 | Zbl 0543.76099
[25] Novotný A.: Steady flows of viscous compressible fluids - $L^2$-approach. Proc. of EQUAM 92, eds. Salvi, Straskraba (1993) Stab. Appl. Anal. Cont. Media 3.3 (1993), 181-199. MR 1245633
[26] Novotný A.: Steady flows of viscous compressible fluids in exterior domains under small perturbations of great potential forces. Math. Model. Meth. Appl. Sci. 3.6 (1993), 725-757. MR 1245633
[27] Novotný A.: Compactness of steady compressible isentropic Navier-Stokes equations via the decomposition method (the whole $\Bbb R^3$). Proc. Symposium Navier-Stokes equations. Theory, numerical analysis and applications, Oberwolfach 1994, eds. Heywood J., Masuda K., Rautmann R., Solonnikov V.A., in press.
[28] Nazarov S., Novotný A., Pileckas K.: On steady compressible Navier-Stokes equations in plane domains with corners. Math. Annalen 304.1 (1996), 121-150. MR 1367886
[29] Novotný A., Padula M.: $L^p$-approach to steady flows of viscous compressible fluids in exterior domains. preprint, Univ. Ferrara, 1992; Arch. Rat. Mech. Anal. 126 (1994), 243-297. MR 1293786
[30] Novotný A., Padula M.: Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains II $(v_\infty = 0)$. J. Math. Kyoto Univ., in press.
[31] Novotný A., Padula M.: Physically reasonable solutions to steady compressible Navier- Stokes equations in 3D-exterior domains I $(v_\infty \neq 0)$. preprint, Univ. Toulon, 1994. MR 1293786
[32] Novotný A., Padula M.: On the decay at infinity of steady flow of viscous gas in an exterior domain I $(v_\infty = 0)$. preprint, Univ. Toulon, 1994.
[33] Novotný A., Padula M.: Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces. Sib. Math. J. 34 (1991), 120-146. MR 1255466
[34] Novotný A., Padula M., Penel P.: A remark on the well possedness of the problem of a steady flow of a viscous barotropic gas in a pipe. Comm. Part. Diff. Eq. 21.1-2 (1996), 23-35. MR 1373763
[35] Novotný A., Penel P.: $L^p$-approach for steady flows of viscous compressible heat conductive gas. $M^3AS$, in press.
[36] Novotný A., Penel P.: About the incompressible limit of steady compressible Navier-Stokes equations in exterior domains. preprint, Univ. Toulon, 1995.
[37] Padula M.: On the uniqueness of viscous compressible flows. Proc. IV. Symposium - Trends in Applications of Pure Mathematics to Mechanics, editor Brilla E., Pitman, 1981.
[38] Padula M.: Existence and uniqueness for viscous steady compressible motions. Proc. Sem. Fis. Mat., Trieste, Dinamica dei fluidi e dei gaz ionizzati, 1982. Zbl 0644.76086
[39] Padula M.: Existence and uniqueness for viscous steady compressible motions. Arch. Rat. Mech. Anal. 77 (1987), 89-102. MR 0860302 | Zbl 0644.76086
[40] Padula M.: A representation formula for steady solutions of a compressible fluid moving at low speed. Transp. Th. Stat. Phys. 21 593-613. MR 1194463
[41] Padula M.: On the exterior steady problem for the equations of a viscous isothermal gas. Proc. EVEQ 92, Prague, eds. John O., Stará J., Comm. Math. Univ. Carolinae 34 (1993), 275-293. MR 1241737 | Zbl 0778.76087
[42] Padula M.: Existence of global solutions for 2-dimensional viscous compressible flow. J. Funct. Anal. 69 (1986), 1-20. MR 0864756
[43] Padula M.: Erratum. J. Funct. Anal. 76 (1988), 231. MR 0923054 | Zbl 0641.76015
[44] Padula M.: Erratum. J. Funct. Anal. 77 (1988), 232. MR 0930400 | Zbl 0641.76015
[45] Padula M., Pileckas K.: Steady flows of viscous ideal gas in domains with noncompact boundaries: existence and asymptotic behaviour in a pipe. to appear.
[46] Pileckas K., Zajaczkowski W.M.: On the free boundary problem for stationary compressible Navier-Stokes equations. Comm. Math. Phys. 129 (1990), 169-204. MR 1046283
[47] Solonnikov V.A.: About the solvability of the initial boundary value problem for the viscous compressible fluid (in Russian).
[48] Solonnikov V.A., Tani A.: Free boundary value problem for a viscous compressible flow with the surface tension. An Int. Tribute, World Sci. Publ. Singapore (1991), pp. 1270-1303.
[49] Stein E.: Harmonic Analysis. Princeton Univ. Press, 1993. MR 1232192 | Zbl 1106.42300
[50] Šverák V.: Nonlinear equations and weak convergence. Proc. of 14th Conference on PDEs, Hřensko, 1989, pp. 103-146 (in Czech).
[51] Tani A.: On the free boundary value problem for compressible viscous fluid motion. J. Math. Kyoto Univ. 21.4 (1981), 839-859. MR 0637520 | Zbl 0499.76061
[52] Tani A.: Two phase free boundary value problem for compressible viscous fluid motion. J. Math. Kyoto Univ. 24.2 (1984), 243-267. MR 0751700
[53] Temam R.: Navier Stokes Equations. Mir, 1981 (in Russian), English original North Holland, 1979. MR 0603444 | Zbl 1157.35333
[54] Triebel H.: Theory of Functional Spaces. Birkhauser, 1983.
[55] Valli A.: On the existence of stationary solutions to compressible Navier-Stokes equations. Ann. Inst. H. Poincaré 4 (1987), 99-113. MR 0877992 | Zbl 0627.76080
[56] Valli A.: Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sc. Norm. Sup. Pisa 4 (1983), 607-647. MR 0753158 | Zbl 0542.35062
[57] Valli A., Zajaczkowski W.M.: Navier-Stokes equations for compressible fluids: global existence and qualitative properties of solutions in the general case. Comm. Math. Phys. 103 (1989), 259-296. MR 0826865
Partner of
EuDML logo