Previous |  Up |  Next

Article

Keywords:
pseudocompact frames; $\sigma$-frames; cozero elements and Alexandroff spaces
Summary:
A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma$-frame and to Alexandroff spaces.
References:
[1] Baboolal D., Banaschewski B.: Compactification and local connectedness of frames. J. Pure Appl. Algebra 70 (1991), 3-16. MR 1100502 | Zbl 0722.54031
[2] Banaschewski B.: The frame envelope of a $\sigma$-frame. Quaestiones Math. 16.1 (1993), 51-60. MR 1217474 | Zbl 0779.06009
[3] Banaschewski B., Frith J., Gilmour C.: On the congruence lattice of a frame. Pacific J. Math. 130.2 (1987), 209-213. MR 0914098 | Zbl 0637.06006
[4] Banaschewski B., Gilmour C.: Stone-Čech compactification and dimension theory for regular $\sigma$-frames. J. London Math. Soc. (2) No.127, 39, part 1 (1989), 1-8. MR 0989914 | Zbl 0675.06005
[5] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales I. Houston J. of Math. 6.3 (1980), 301-312. MR 0597771 | Zbl 0473.54026
[6] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales II. J. Pure Appl. Algebra 33 (1984), 107-122. MR 0754950 | Zbl 0549.54017
[7] Banaschewski B., Pultr A.: Paracompactness revisited. Applied Categorical Structures 1 (1993), 181-190. MR 1245799 | Zbl 0797.54032
[8] Gilmour C.: Realcompact Alexandroff spaces and regular $\sigma$-frames. PhD Thesis, University of Cape Town, 1981. Zbl 0601.54019
[9] Gilmour C.: Realcompact Alexandroff spaces and regular $\sigma$-frames. Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. MR 0743702
[10] Gordon H.: Rings of functions determined by zero-sets. Pacific J. Math. 36 (1971), 133-157. MR 0320996 | Zbl 0185.38803
[11] Johnstone P.T.: Stone Spaces. Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. MR 0698074 | Zbl 0586.54001
[12] Kennison J.: $m$-Pseudocompactness. Trans. Amer. Math. Soc. 104 (1962), 436-442. MR 0145478 | Zbl 0111.35004
[13] Madden J.: $\kappa$-Frames. J. Pure Appl. Algebra 70 (1991), 107-127. MR 1100510 | Zbl 0721.06006
[14] Madden J., Vermeer H.: Lindelöf locales and realcompactness. Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. MR 0830360 | Zbl 0603.54021
[15] Marcus N.: Realcompactifications of frames. MSc Thesis, University of Cape Town, 1994.
[16] Reynolds G.: On the spectrum of a real representable ring. Applications of Sheaves, Springer LNM 753 (1977), 595-611. MR 0555563 | Zbl 0426.18002
[17] Reynolds G.: Alexandroff algebras and complete regularity. Proc. Amer. Math. Soc. 76 (1979), 322-326. MR 0537098 | Zbl 0416.54015
[18] Walters J.: Uniform sigma frames and the cozero part of uniform frames. MSc Thesis, University of Cape Town, 1990.
[19] Walters J.: Compactifications and uniformities on sigma frames. Comment. Math. Univ. Carolinae 32.1 (1991), 189-198. MR 1118301 | Zbl 0735.54014
Partner of
EuDML logo