Article
Keywords:
cardinal function; almost P-space
Summary:
Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space $X$ of this kind the inequality ``$|X| \leq \psi_{c}(X)^{t(X)}$" holds.
References:
[1] Dow A.:
An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17-72.
MR 1031969 |
Zbl 0696.03024
[4] Fedeli A., Watson S.:
Elementary submodels and cardinal functions. Topology Proc., to appear.
MR 1429175 |
Zbl 0894.54008
[5] Hodel R.E.:
Cardinal Functions I. in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.1-61.
MR 0776620 |
Zbl 0559.54003
[6] Juhàsz I.:
Cardinal Functions in Topology-ten years later. Mathematical Centre Tracts 123, Amsterdam, 1980.
MR 0576927
[8] van Mill J.:
An introduction to $\betaømega$. in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.503-567.
MR 0776630
[9] Watson S.:
The construction of topological spaces: Planks and Resolutions. in: Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), North Holland, 1992, pp.675-757.
MR 1229141 |
Zbl 0803.54001
[10] Watson S.:
The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology. Topology Appl. 58 (1994), 25-342.
MR 1280708 |
Zbl 0836.54004