Previous |  Up |  Next

Article

Title: Prime Ideal Theorems and systems of finite character (English)
Author: Erné, Marcel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 513-536
.
Category: math
.
Summary: \font\jeden=rsfs7 \font\dva=rsfs10 We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them the Intersection Lemma (stating that if $\text{\jeden S}$ is a system of finite character then so is the system of all collections of finite subsets of $\bigcup \text{\jeden S}$ meeting a common member of $\text{\jeden S}$), the Finite Cutset Lemma (a finitary version of the Teichm"uller-Tukey Lemma), and various compactness theorems. Several implications between these statements remain valid in ZF even if the underlying set is fixed. Some fundamental algebraic and order-theoretical facts like the Artin-Schreier Theorem on the orderability of real fields, the Erdös-De Bruijn Theorem on the colorability of infinite graphs, and Dilworth's Theorem on chain-decompositions for posets of finite width, are easy consequences of the Intersection Lemma or of the Finite Cutset Lemma. (English)
Keyword: axiom of choice
Keyword: compact
Keyword: consistent
Keyword: prime ideal
Keyword: system of finite character
Keyword: subbase
MSC: 03E25
MSC: 08A30
MSC: 13B25
MSC: 13B30
idZBL: Zbl 0938.03072
idMR: MR1485072
.
Date available: 2009-01-08T18:35:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118949
.
Reference: [1] Artin E., Schreier O.: Algebraische Konstruktion reeller Körper.Abh. Math. Sem. Hamb. Univ. 5 (1926), 85-99.
Reference: [2] Aubert K.E.: Theory of $x$-ideals.Acta Math. 107 (1962), 1-52. Zbl 0108.26002, MR 0148773
Reference: [3] Banaschewski B.: The power of the ultrafilter theorem.J. London Math. Soc. (2) 27 (1983), 193-202. Zbl 0523.03037, MR 0692524
Reference: [4] Banaschewski B.: Prime elements from prime ideals.Order 2 (1985), 211-213. Zbl 0576.06010, MR 0815866
Reference: [5] Banaschewski B.: A new proof that ``Krull implies Zorn''.Mathematical Logic Quarterly 40 (1994), 478-480. Zbl 0813.03032, MR 1301940
Reference: [6] Banaschewski B., Erné M.: On Krull's separation lemma.Order 10 (1993), 253-260. Zbl 0795.06005, MR 1267191
Reference: [7] Crawley P., Dilworth R.P.: Algebraic Theory of Lattices.Prentice-Hall, N.J., 1973. Zbl 0494.06001
Reference: [8] Davey B.A., Priestley H.A.: Introduction to Lattices and Order.Cambridge University Press, 1990. Zbl 1002.06001, MR 1058437
Reference: [9] de Bruijn N.G., Erdös P.: A colour problem for infinite graphs and a problem in the theory of relations.Indag. Math. 13 (1951), 371-373. MR 0046630
Reference: [10] Ebbinghaus H.-D., Flum J., Thomas W.: Mathematical Logic.Springer-Verlag, New York, 1991. Zbl 1139.03001, MR 1278260
Reference: [11] Engeler E.: Eine Konstruktion von Modellerweiterungen.Z. Math. Logik Grundlagen Math. 5 (1959), 126-131. Zbl 0087.00904, MR 0109124
Reference: [12] Erné M.: Semidistributivity, prime ideals and the subbase lemma.Rend. Circ. Math. Palermo II -XLI (1992), 241-250. MR 1196618
Reference: [13] Erné M.: A primrose path from Krull to Zorn.Comment. Math. Univ. Carolinae 36 (1995), 123-126. MR 1334420
Reference: [14] Erné M.: Prime ideal theorems for universal algebras.Preprint Univ. Hannover, 1995.
Reference: [15] Erné M., Gatzke H.: Convergence and continuity in partially ordered sets and semilattices.in: R.-E. Hoffmann and K.H. Hofmann (eds.), Continuous lattices and their applications, Lecture Notes in Pure and Appl. Math. 101, Marcel Dekker Inc., New York-Basel, 1985, pp.9-40. MR 0825993
Reference: [16] Frink O.: Topology in lattices.Trans. Amer. Math. Soc. 51 (1942), 569-583. Zbl 0061.39305, MR 0006496
Reference: [17] Fuchs L.: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [18] Gähler W.: Grundstrukturen der Analysis I.Akademie-Verlag and Birkhäuser Verlag, Berlin-Basel, 1977. MR 0519344
Reference: [19] Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S.: A Compendium of Continuous Lattices.Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0452.06001, MR 0614752
Reference: [20] Grätzer G.: General Lattice Theory.Birkhäuser, Basel, 1978. MR 0504338
Reference: [21] Halpern J.: The independence of the axiom of choice from the Boolean prime ideal theorem.Fund. Math. 55 (1964), 57-66. Zbl 0151.01002, MR 0164891
Reference: [22] Halpern J., Lévy A.: The Boolean prime ideal theorem does not imply the axiom of choice.in: D. Scott (ed.), Axiomatic set theory, Proc. Symp. Pure Math., Univ. of California, Los Angeles 13 (1), (1967), 83-124. MR 0284328
Reference: [23] Halpern D., Howard P.E.: Cardinals $m$ such that $2m=m$.Bull. Amer. Math. Soc. 76 (1970), 487-490. Zbl 0223.02055, MR 0268034
Reference: [24] Henkin L.: The completeness of the first order functional calculus.J. Symbolic Logic 14 (1949), 159-166. Zbl 0034.00602, MR 0033781
Reference: [25] Hodges W.: Krull implies Zorn.J. London Math. Soc. 19 (1979), 285-287. Zbl 0394.03045, MR 0533327
Reference: [26] Jech T.: The Axiom of Choice.North-Holland, Amsterdam-New York, 1973. Zbl 0259.02052, MR 0396271
Reference: [27] Johnstone P.: Almost maximal ideals.Fund. Math. 123 (1984), 197-209. Zbl 0552.06004, MR 0761975
Reference: [28] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982
Reference: [29] Klimovsky G.: Zorn's theorem and the existence of maximal filters and ideals in distributive lattices.Rev. Un. Mat. Argentina 18 (1958), 160-164. MR 0132707
Reference: [30] Läuchli H.: Coloring infinite graphs and the Boolean prime ideal theorem.Israel J. Math. 9 (1971), 420-429. MR 0288051
Reference: [31] Lévy A.: Remarks on a paper by J. Mycielski.Acta Math. Acad. Sci. Hungar. 14 (1963), 125-130. MR 0146088
Reference: [32] Los J., Ryll-Nardzewski C.: 0n the application of Tychonoff's theorem in mathematical proofs.Fund. Math. 38 (1951), 233-237. MR 0048795
Reference: [33] Los J., Ryll-Nardzewski C.: Effectiveness of the representation theory for Boolean algebras.Fund Math. 41 (1954), 49-56. MR 0065527
Reference: [34] Moore G.H.: Zermelo's Axiom of Choice - its Origins, Development and Influence.Springer-Verlag, New York-Heidelberg-Berlin, 1982. Zbl 0497.01005, MR 0679315
Reference: [35] Mycielski J.: Some remarks and problems on the colouring of infinite graphs and the theorem of Kuratowski.Acta Math. Acad. Sci. Hung. 12 (1961), 125-129. MR 0130686
Reference: [36] Parovičenko I.I.: Topological equivalents of the Tihonov theorem.Dokl. Akad. Nauk SSSR 184 (1969), 38-39 Soviet Math. Dokl. 10 (1969), 33-34. MR 0238266
Reference: [37] Rav Y.: Variants of Rado's selection lemma and their applications.Math. Nachr. 79 (1977), 145-165. Zbl 0359.02066, MR 0476530
Reference: [38] Rav Y.: Semiprime ideals in general lattices.J. Pure and Appl. Algebra 56 (1989), 105-118. Zbl 0665.06006, MR 0979666
Reference: [39] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice, II.North-Holland, Amsterdam-New York-Oxford, 1985. MR 0798475
Reference: [40] Rubin H., Scott D.S.: Some topological theorems equivalent to the prime ideal theorem.Bull. Amer. Math. Soc. 60 (1954), 389 (Abstract).
Reference: [41] Sageev G.: An independence result concerning the axiom of choice.Ann. Math. Logic 8 (1975), 1-184. Zbl 0306.02060, MR 0366668
Reference: [42] Scott D.S.: Prime ideals for rings, lattices and Boolean algebras.Bull. Amer. Math. Soc. 60 (1954), 390 (Abstract).
Reference: [43] Tarski A.: Prime ideal theorems for Boolean algebras and the axiom of choice. Prime ideal theorems for set algebras and ordering principles. Prime ideal theorems for set algebras and the axiom of choice.Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstracts).
Reference: [44] Teichmüller O.: Braucht der Algebraiker das Auswahlaxiom?.Deutsche Math. 4 (1939), 567-577. MR 0000212
Reference: [45] Tukey J.W.: Convergence and uniformity in topology.Annals of Math. Studies 2, Princeton, 1940. Zbl 0025.09102, MR 0002515
Reference: [46] van Benthem J.F.A.K.: A set-theoretical equivalent of the prime ideal theorem for Boolean algebras.Fund. Math. 89 (1975), 151-153. Zbl 0363.04010, MR 0382003
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_8.pdf 326.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo