[1] Comfort W.W.:
Topological groups. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.1143-1263.
MR 0776643 |
Zbl 1071.54019
[2] Comfort W.W.:
Problems on topological groups and other homogeneous spaces. Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland, 1990, pp.311-347.
MR 1078657
[3] Comfort W.W., Remus D.:
Imposing pseudocompact group topologies on Abelian groups. Fundamenta Mathematica 142 (1993), 221-240.
MR 1220550 |
Zbl 0865.54035
[4] Dikranjan D., Shakhmatov D.:
Pseudocompact topologies on groups. Topology Proc. 17 (1992), 335-342.
MR 1255816 |
Zbl 0795.22001
[5] van Douwen E.K.:
The product of two countably compact topological groups. Trans. Amer. Math. Soc. 262 (1980), 417-427.
MR 0586725 |
Zbl 0453.54006
[7] Hart K.P., van Mill J.:
A countably compact $H$ such that $H\times H$ is not countably compact. Trans. Amer. Math. Soc. 323 (1991), 811-821.
MR 0982236
[8] Hajnal A., Juhász I.:
A separable normal topological group need not be Lindelöf. General Topology Appl. 6 (1976), 199-205.
MR 0431086
[10] Robbie D., Svetlichny S.:
An answer to A.D. Wallace's question about countably compact cancellative semigroups. Proc. Amer. Math. Soc. 124 (1996), 325-330.
MR 1328373 |
Zbl 0843.22001
[11] Tkachenko M.G.:
Countably compact and pseudocompact topologies on free Abelian groups. Izvestia VUZ. Matematika 34 (1990), 68-75.
MR 1083312 |
Zbl 0714.22001
[12] Tomita A.H.:
The Wallace Problem: a counterexample from $M A_{countable}$ and $p$-compactness. Canadian Math. Bull. 39 (1996), 4 486-498.
MR 1426694
[13] Tomita A.H.:
On finite powers of countably compact groups. Comment. Math. Univ. Carolinae 37 (1996), 3 617-626.
MR 1426926 |
Zbl 0881.54022
[14] Tomita A.H.: A group under $M A_{countable}$ whose square is countably compact but whose cube is not. to appear in Topology Appl.
[15] Tomita A.H.: Countable compactness and related properties in groups and semigroups: free Abelian groups and the Wallace Problem. Ph.D Thesis, York University, June 1995.
[16] Vaughan J.:
Countably compact and sequentially compact spaces. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.569-602.
MR 0776631 |
Zbl 0562.54031
[17] Wallace A.D.:
The structure of topological semigroups. Bull. Amer. Math. Soc. 61 (1955), 95-112.
MR 0067907 |
Zbl 0065.00802
[18] Weiss W.:
Versions of Martin's Axiom. Handbook of Set-Theoretic Topology (K. Kunen and J. Vaughan, eds.), North-Holland, 1984, pp.827-886.
MR 0776638 |
Zbl 0571.54005