[1] Alonso J.: 
Ortogonalidad en espacios normados. Ph.D. Thesis, Universidad de Extremadura, 1984. 
MR 0823479 
[2] Alonso J., Benitez C.: 
Some characteristic and non-characteristic properties of inner product spaces. J. Approx. Theory 55 (1988), 318-325. 
MR 0968938 | 
Zbl 0675.41047 
[3] Amir D.: 
Characterizations of Inner Product Spaces. Birkhauser Verlag, Basel-Boston-Stuttgart, 1986. 
MR 0897527 | 
Zbl 0617.46030 
[4] Baronti M.: Su alcune parametri degli spazi normati. Boll. Un. Mat. Ital. 5 (18)-B (1981), 1065-1085.
[5] Baronti M., Papini L.: 
Projections, skewness and related constants in real normed spaces. Math. Pannon. 3 (1992), 31-47. 
MR 1170536 | 
Zbl 0763.46008 
[6] Benitez C., Przeslawski K., Yost D.: 
A universal modulus for normed spaces. Studia Math. 127 1 (1998), 21-46. 
MR 1488142 | 
Zbl 0909.46008 
[7] Day M.M.: 
Uniform convexity in factor and conjugate spaces Ann. of Math. (2). 45 (1944), 375-385. 
MR 0010779 
[8] Desbiens J.: 
Constante rectangle et bias d'un espace de Banach. Bull. Austral. Math. Soc. 42 (1990), 465-482. 
MR 1083283 
[9] Desbiens J.: 
Sur les constantes de Thele et de Schäffer. Ann. Sci. Math. Québec 16 (2) (1992), 129-141. 
MR 1199184 | 
Zbl 0788.46018 
[10] Franchetti C.: 
On the radial projection in Banach spaces. in Approximation Theory III (ed. by E.W. Cheney), pp.425-428, Academic Press, New York, 1980. 
MR 0602747 | 
Zbl 0483.46012 
[11] James R.C.: 
Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 61 (1947), 265-292. 
MR 0021241 | 
Zbl 0037.08001 
[12] Joly J.L.: 
Caracterizations d'espaces hilbertiens au moyen de la constante rectangle. J. Approx. Theory 2 (1969), 301-311. 
MR 0270126 
[13] Lindenstrauss J.: 
On the modulus of smoothness and divergent series in Banach spaces. Michigan Math. J. 10 (1963), 241-252. 
MR 0169061 | 
Zbl 0115.10001 
[14] Nordlander G.: 
The modulus of convexity in normed linear spaces. Ark. Mat. 4 (1960), 15-17. 
MR 0140915 | 
Zbl 0092.11402 
[15] del Rio M., Benitez C.: 
The rectangular constant for two-dimensional spaces. J. Approx. Theory 19 (1977), 15-21. 
MR 0448039 | 
Zbl 0343.46018 
[16] Şerb I.: 
On the behaviour of the tangential modulus of a Banach space I. Revue d'Analyse Numérique et de Théorie de l'Approximation 24 (1995), 241-248. 
MR 1608428 
[17] Şerb I.: 
On the behaviour of the tangential modulus of a Banach space II. Mathematica (Cluj) 38 (61) (1996), 199-207. 
MR 1606805 
[18] Şerb I.: 
A Day-Nordlander theorem for the tangential modulus of a normed space. J. Math. Anal. Appl. 209 (1997), 381-391. 
MR 1474615 
[20] Thele R.L.: 
Some results on the radial projection in Banach spaces. Proc. Amer. Math. Soc. 42 (1974), 2 483-486. 
MR 0328550 | 
Zbl 0276.46015 
[21] Ullán de Celis A.: 
Modulos de convexidad y lisura en espacios normados. Ph.D. Thesis, Universidad de Extremadura, 1991. 
MR 1174971