Article
Keywords:
solvability; loop; group
Summary:
We investigate the situation when the inner mapping group of a commutative loop is of order $2p$, where $p=4t+3$ is a prime number, and we show that then the loop is solvable.
References:
[1] Bruck R.H.:
Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354.
MR 0017288 |
Zbl 0061.02201
[4] Neumann P.M., Stoy G., Thompson E.:
Groups and Ggeometry. Oxford University Press, 1994.
MR 1283590
[5] Niemenmaa M.:
Transversals, commutators and solvability in finite groups. Bollettino U.M.I. (7) 9-A (1995), 203-208.
MR 1324621 |
Zbl 0837.20026
[6] Niemenmaa M.:
On loops which have dihedral $2$-groups as inner mapping groups. Bull. Australian Math. Soc. 52 (1995), 153-160.
MR 1344268 |
Zbl 0838.20080
[7] Niemenmaa M.:
On connected transversals to subgroups whose order is a product of two primes. European J. Comb. 18 (1997), 915-919.
MR 1485376 |
Zbl 0889.20044
[8] Niemenmaa M., Kepka T.:
On multiplication groups of loops. J. Algebra 135 (1990), 112-122.
MR 1076080 |
Zbl 0706.20046
[9] Niemenmaa M., Kepka T.:
On connected transversals to abelian subgroups. Bull. Australian Math. Soc. 49 (1994), 121-128.
MR 1262682 |
Zbl 0799.20020
[10] Niemenmaa M., Vesanen A.:
On subgroups, transversals and commutators. in Proceeding of the Groups Galway/St. Andrews 1993, London Math. Soc. Lecture Notes Series 212 (1995), pp.476-481.
MR 1337289 |
Zbl 0862.20023