Article
Keywords:
set-valued mapping; l.s.c. mapping; $\Sigma$-product; selection
Summary:
Every lower semi-continuous closed-and-convex valued mapping $\Phi : X\rightarrow 2^{Y}$, where $X$ is a $\Sigma$-product of metrizable spaces and $Y$ is a Hilbert space, has a single-valued continuous selection. This improves an earlier result of the author.
References:
                        
[2] Choban M., Nedev S.: 
Continuous selections for mappings with generalized ordered domain. Math. Balkanica, New Series 11 , Fasc. 1-2 (1997), 87-95. 
MR 1606612 | 
Zbl 0943.46003 
[3] Corson H.: 
Normality of subsets of product spaces. Amer. J. Math. 81 (1959), 785-796. 
MR 0107222 
[4] Dieudonné J.: 
Une généralisation des espaces compacts. J. de Math. Pures et Appl. 23 (1944), 65-76. 
MR 0013297 
[5] Engelking R.: 
General Topology. PWN, Warszawa, 1985. 
Zbl 0684.54001 
[6] Gul'ko S.P.: Properties of sets lying in $\Sigma$-products. Dokl. AN SSSR, 1977.
[8] Katětov M.: 
On the extension of locally finite coverings (in Russian). Colloq. Math. 6 (1958), 145-151. 
MR 0103450 
[10] Rudin M.E.: $\Sigma$-products of metric spaces are normal. preprint (see [5], the problems to Chapter 4).
[11] Shishkov I.: 
Extensions of l.s.c. mappings into reflexive Banach spaces. Set-Valued Analysis, to appear. 
MR 1888457 | 
Zbl 1018.54012 
[12] Shishkov I.: 
Selections of l.s.c. mappings into Hilbert spaces. Compt. rend. Acad. Bulg. Sci. 53.7 (2000). 
MR 1779519