Previous |  Up |  Next

Article

Title: The Laplace derivative (English)
Author: Svetic, R. E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 2
Year: 2001
Pages: 331-343
.
Category: math
.
Summary: A function $f:\Bbb R \rightarrow \Bbb R$ is said to have the $n$-th Laplace derivative on the right at $x$ if $f$ is continuous in a right neighborhood of $x$ and there exist real numbers $\alpha_0, \ldots, \alpha_{n-1}$ such that $s^{n+1}\int_0^\delta e^{-st}[f(x+t)-\sum_{i=0}^{n-1}\alpha_i t^i/i!]\,dt$ converges as $s\rightarrow +\infty$ for some $\delta>0$. There is a corresponding definition on the left. The function is said to have the $n$-th Laplace derivative at $x$ when these two are equal, the common value is denoted by $f_{\langle n\rangle }(x)$. In this work we establish the basic properties of this new derivative and show that, by an example, it is more general than the generalized Peano derivative; hence the Laplace derivative generalizes the Peano and ordinary derivatives. (English)
Keyword: Peano derivative
Keyword: generalized Peano derivative
Keyword: Laplace derivative
Keyword: Laplace transform
Keyword: Tauberian theorem
MSC: 26A21
MSC: 26A24
MSC: 26A48
MSC: 40E05
MSC: 44A10
idZBL: Zbl 1051.26004
idMR: MR1832151
.
Date available: 2009-01-08T19:10:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119247
.
Reference: [1] Bullen P.S., Mukhopadhyay S.N.: Properties of Baire$^\star$-1 Darboux functions and some mean value theorems for Peano derivatives.Math. Japon. 36 (1991), 309-316. Zbl 0726.26002, MR 1095745
Reference: [2] Doetsch G.: Handbuch der Laplace-Transformation.Vol. 1, Birkhäuser Verlag, Basel, 1950. Zbl 0319.44001, MR 0344808
Reference: [3] Fejzić H.: The Peano derivatives.Doct. Dissertation, Michigan State University, 1992.
Reference: [4] Fejzić H.: On generalized Peano and Peano derivatives.Fund. Math. 143 (1993), 55-74. MR 1234991
Reference: [5] Fejzić H., Rinne D.: Continuity properties of Peano derivatives in several variables.Real Anal. Exchange 21 (1995-6), 292-298. MR 1377538
Reference: [6] Laczkovich M.: On the absolute Peano derivatives.Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 21 (1978), 83-97. Zbl 0425.26005, MR 0536205
Reference: [7] Lee C.-M.: On the approximate Peano derivatives.J. London Math. Soc. 12 (1976), 475-478. Zbl 0317.26005, MR 0399378
Reference: [8] Lee C.-M.: Generalizations of Cesàro continuous functions and integrals of Perron type.Trans. Amer. Math. Soc. 266 (1981), 461-481. Zbl 0495.26003, MR 0617545
Reference: [9] Lee C.-M.: On absolute Peano derivatives.Real Anal. Exchange 8 (1982-3), 228-243. Zbl 0535.26003, MR 0694511
Reference: [10] Lee C.-M.: On generalized Peano derivatives.Trans. Amer. Math. Soc. 275 (1983), 381-396. Zbl 0506.26006, MR 0678358
Reference: [11] Lee C.-M.: On generalizations of exact Peano derivatives.Contemp. Math. 42 (1985), 97-103. Zbl 0575.26004, MR 0807982
Reference: [12] Mukhopadhyay S.N., Mitra S.: Measurability of Peano derivatives and approximate Peano derivatives.Real Anal. Exchange 20 (1994-5), 768-775. MR 1348098
Reference: [13] Oliver H.W.: The exact Peano derivative.Trans. Amer. Math. Soc. 76 (1954), 444-456. Zbl 0055.28505, MR 0062207
Reference: [14] Svetic R.E., Volkmer H.: On the ultimate Peano derivative.J. Math. Anal. Appl. 218 (1998), 439-452. Zbl 0893.26001, MR 1605380
Reference: [15] Verblunsky S.: On the Peano derivatives.Proc. London Math. Soc. 22 (1971), 313-324. Zbl 0209.36401, MR 0285678
Reference: [16] Weil C.E.: The Peano notion of higher order differentiation.Math. Japon. 42 (1995), 587-600. Zbl 0841.26003, MR 1363850
Reference: [17] Widder D.V.: An Introduction to Transform Theory.Academic Press, New York, 1971. Zbl 0219.44001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-2_10.pdf 234.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo