Previous |  Up |  Next

Article

Title: Countable compactness and $p$-limits (English)
Author: García-Ferreira, S.
Author: Tomita, A. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 42
Issue: 3
Year: 2001
Pages: 521-527
.
Category: math
.
Summary: For $\emptyset \neq M \subseteq \omega^*$, we say that $X$ is quasi $M$-compact, if for every $f: \omega \rightarrow X$ there is $p \in M$ such that $\overline{f}(p) \in X$, where $\overline{f}$ is the Stone-Čech extension of $f$. In this context, a space $X$ is countably compact iff $X$ is quasi $\omega^*$-compact. If $X$ is quasi $M$-compact and $M$ is either finite or countable discrete in $\omega^*$, then all powers of $X$ are countably compact. Assuming $CH$, we give an example of a countable subset $M \subseteq \omega^*$ and a quasi $M$-compact space $X$ whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi $M$-compact space is $p$-compact (= quasi $\{p\}$-compact) for some $p \in \omega^*$, whenever $M \in [\omega^*]^{< {\frak c}}$. We prove that if $\emptyset \notin \{ T_\xi :\, \xi < 2^{{\frak c}} \} \subseteq [\omega^*]^{< 2^{{\frak c}}}$, then there is a countably compact space $X$ that is not quasi $T_\xi$-compact for every $\xi < 2^{{\frak c}}$; hence, if $2^{{\frak c}}$ is regular, then there is a countably compact space $X$ such that $X$ is not quasi $M$-compact for any $M \in [\omega^*]^{< 2^{{\frak c}}}$. We list some open problems. (English)
Keyword: $p$-limit
Keyword: $p$-compact
Keyword: almost $p$-compact
Keyword: quasi $M$-compact
Keyword: countably compact
MSC: 54A20
MSC: 54A35
MSC: 54B99
MSC: 54D20
MSC: 54D30
idZBL: Zbl 1053.54003
idMR: MR1860240
.
Date available: 2009-01-08T19:12:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119266
.
Reference: [Be] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697
Reference: [Bl] Blass A.: Near coherence of filters I: Cofinal equivalence of models of arithmetic.Notre Dame J. Formal Logic 27 (1986), 579-591. Zbl 0622.03040, MR 0867002
Reference: [BL] Blass A., Laflamme C.: Consistency results about filters and the number of inequivalent growth types.J. Symbolic Logic 54 (1989), 50-56. Zbl 0673.03038, MR 0987321
Reference: [BS1] Blass A., Shelah S.: Near coherence of filters III: A simplified consistency proof.to appear. Zbl 0702.03030, MR 1036674
Reference: [BS2] Blass A., Shelah S.: There may be simple $P_{\aleph_1}$ and $P_{\aleph_2}$ points and the Rudin-Keisler ordering may be downward directed.Ann. Pure Appl. Logic 33 (1987), 213-243. MR 0879489
Reference: [Co] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893
Reference: [CN] Comfort W., Negrepontis S.: The Theory of Ultrafilters.Springer-Verlag, Berlin, 1974. Zbl 0298.02004, MR 0396267
Reference: [G] Garcia-Ferreira S.: Quasi $M$-compact spaces.Czechoslovak Math. J. 46 (1996), 161-177. Zbl 0914.54019, MR 1371698
Reference: [GJ] Gillman L., Jerison M.: Rings of continuous functions.Lectures Notes in Mathematics No. 27, Springer-Verlag, 1976. Zbl 0327.46040, MR 0407579
Reference: [GS] Ginsburg J., Saks V.: Some applications of ultrafilters in topology.Pacific J. Math. 57 (1975), 403-418. Zbl 0288.54020, MR 0380736
Reference: [Ku] Kunen K.: Weak $P$-points in $ømega^*$.Colloquia Math. Soc. János Bolyai 23 (1978), North-Holland, Amsterdam, pp.741-749. MR 0588822
Reference: [vM] van Mill J.: An introduction to $\beta(ømega)$.in K. Kunen and J.E. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp.503-567. Zbl 0555.54004, MR 0776630
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_42-2001-3_10.pdf 217.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo