Previous |  Up |  Next

Article

Keywords:
Moufang loops; loops $M(G, 2)$; inverse property loops; Bol loops
Summary:
Let $G$ be a finite group and $C_2$ the cyclic group of order 2. Consider the 8 multiplicative operations $(x,y)\mapsto (x^iy^j)^k$, where $i,j,k\in\{-1,\,1\}$. Define a new multiplication on $G\times C_2$ by assigning one of the above 8 multiplications to each quarter $(G\times\{i\})\times(G\times\{j\})$, for $i,j\in C_2$. If the resulting quasigroup is a Bol loop, it is Moufang. When $G$ is nonabelian then exactly four assignments yield Moufang loops that are not associative; all (anti)isomorphic, known as loops $M(G,2)$.
References:
[1] Chein O.: Moufang loops of small order. Memoirs of the American Mathematical Society, Volume 13, Issue 1, Number 197 (1978). MR 0466391 | Zbl 0378.20053
[2] Chein O., Pflugfelder H.O., Smith J.D.H.: Quasigroups and Loops: Theory and Applications. Sigma Series in Pure Mathematics 8, Heldermann Verlag, Berlin, 1990. MR 1125806 | Zbl 0719.20036
[3] Chein O., Pflugfelder H.O.: The smallest Moufang loop. Arch. Math. 22 (1971), 573-576. MR 0297914 | Zbl 0241.20061
[4] Drápal A., Vojtěchovský P.: Moufang loops that share associator and three quarters of their multiplication tables. submitted.
[5] Goodaire E.G., May S., Raman M.: The Moufang Loops of Order less than $64$. Nova Science Publishers, 1999. MR 1689624 | Zbl 0964.20043
[6] Pflugfelder H.O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics 7, Heldermann Verlag, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[7] Vojtěchovský P.: The smallest Moufang loop revisited. to appear in Results Math. MR 2011917
[8] Vojtěchovský P.: Connections between codes, groups and loops. Ph.D. Thesis, Charles Univesity, 2003.
Partner of
EuDML logo