Previous |  Up |  Next

Article

Title: Dimension in algebraic frames, II: Applications to frames of ideals in $C(X)$ (English)
Author: Martínez, Jorge
Author: Zenk, Eric R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 607-636
.
Category: math
.
Summary: This paper continues the investigation into Krull-style dimensions in algebraic frames. Let $L$ be an algebraic frame. $\operatorname{dim}(L)$ is the supremum of the lengths $k$ of sequences $p_0< p_1< \cdots <p_k$ of (proper) prime elements of $L$. Recently, Th. Coquand, H. Lombardi and M.-F. Roy have formulated a characterization which describes the dimension of $L$ in terms of the dimensions of certain boundary quotients of $L$. This paper gives a purely frame-theoretic proof of this result, at once generalizing it to frames which are not necessarily compact. This result applies to the frame $\Cal C_z(X)$ of all $z$-ideals of $C(X)$, provided the underlying Tychonoff space $X$ is Lindelöf. If the space $X$ is compact, then it is shown that the dimension of $\Cal C_z(X)$ is at most $n$ if and only if $X$ is scattered of Cantor-Bendixson index at most $n+1$. If $X$ is the topological union of spaces $X_i$, then the dimension of $\Cal C_z(X)$ is the supremum of the dimensions of the $\Cal C_z(X_i)$. This and other results apply to the frame of all $d$-ideals $\Cal C_d(X)$ of $C(X)$, however, not the characterization in terms of boundaries. An explanation of this is given within, thus marking some of the differences between these two frames and their dimensions. (English)
Keyword: dimension of a frame
Keyword: $z$-ideals
Keyword: scattered space
Keyword: natural typing of open sets
MSC: 03G10
MSC: 06D22
MSC: 16P60
MSC: 54B35
MSC: 54C30
idZBL: Zbl 1121.06009
idMR: MR2259494
.
Date available: 2009-05-05T16:53:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119554
.
Reference: [AB91] Adams M.E., Beazer R.: Congruence properties of distributive double $p$-algebras.Czechoslovak Math. J. 41 (1991), 395-404. Zbl 0758.06008, MR 1117792
Reference: [BP04] Ball R.N., Pultr A.: Forbidden forests in Priestley spaces.Cah. Topol. Géom. Différ. Catég. 45 1 (2004), 2-22. Zbl 1062.06020, MR 2040660
Reference: [BKW77] Bigard A., Keimel K., Wolfenstein S.: Groupes et anneaux réticulés.Lecture Notes in Mathematics 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653
Reference: [Bl76] Blair R.L.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542
Reference: [BlH74] Blair R.L., Hager A.W.: Extensions of zerosets and of real valued functions.Math. Z. 136 (1974), 41-57. MR 0385793
Reference: [CL02] Coquand Th., Lombardi H.: Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings.Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj, S. Wiegand, Eds.), pp.477-499; Lecture Notes in Pure and Appl. Math., 231, Marcel Dekker, New York, 2003. MR 2029845
Reference: [CLR03] Coquand Th., Lombardi H., Roy M.-F.: Une caractérisation élémentaire de la dimension de Krull.preprint.
Reference: [D95] Darnel M.: Theory of Lattice-Ordered Groups.Marcel Dekker, New York, 1995. Zbl 0810.06016, MR 1304052
Reference: [En89] Engelking R.: General Topology.Sigma Series in Pure Math. 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [Es98] Escardó M.H.: Properly injective spaces and function spaces.Topology Appl. 89 (1998), 75-120. MR 1641443
Reference: [GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [HJ61] Henriksen M., Johnson D.G.: On the structure of a class of archimedean lattice-ordered algebras.Fund. Math. 50 (1961), 73-94. Zbl 0099.10101, MR 0133698
Reference: [MLMW94] Henriksen M., Larson S., Martínez J., Woods R.G.: Lattice-ordered algebras that are subdirect products of valuation domains Trans. Amer. Math. Soc..345 (1994), 1 195-221. MR 1239640
Reference: [HMW03] Henriksen M., Martínez J., Woods R.G.: Spaces $X$ in which all prime $z$-ideals of $C(X)$ are either minimal or maximal.Comment. Math. Univ. Carolinae 44 2 (2003), 261-294. MR 2026163
Reference: [HW04] Henriksen M., Woods R.G.: Cozero complemented spaces: when the space of minimal prime ideals of a $C(X)$ is compact.Topology Appl. 141 (2004), 147-170. Zbl 1067.54015, MR 2058685
Reference: [HuP80a] Huijsmans C.B., de Pagter B.: On $z$-ideals and $d$-ideals in Riesz spaces, I.Indag. Math. 42 2 (1980), 183-195. Zbl 0442.46022, MR 0577573
Reference: [HuP80b] Huijsmans C.B., de Pagter B.: On $z$-ideals and $d$-ideals in Riesz spaces, II.Indag. Math. 42 4 (1980), 391-408. Zbl 0451.46003, MR 0597997
Reference: [J82] Johnstone P.J.: Stone Spaces.Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge Univ. Press, Cambridge, 1982. Zbl 0586.54001, MR 0698074
Reference: [JT84] Joyal A., Tierney M.: An extension of the Galois theory of Grothendieck.Mem. Amer. Math. Soc. 51 309 (1984), 71 pp. Zbl 0541.18002, MR 0756176
Reference: [Ko89] Koppelberg S.: Handbook of Boolean Algebras, I.J.D. Monk, Ed., with R. Bonnet; North Holland, Amsterdam-New York-Oxford-Tokyo, 1989. MR 0991565
Reference: [M73a] Martínez J.: Archimedean lattices.Algebra Universalis 3 (1973), 247-260. MR 0349503
Reference: [M04a] Martínez J.: Dimension in algebraic frames.Czechoslovak Math. J., to appear. MR 2291748
Reference: [M04b] Martínez J.: Unit and kernel systems in algebraic frames.Algebra Universalis, to appear. MR 2217275
Reference: [MZ03] Martínez J., Zenk E.R.: When an algebraic frame is regular.Algebra Universalis 50 (2003), 231-257. Zbl 1092.06011, MR 2037528
Reference: [MZ06] Martínez J., Zenk E.R.: Dimension in algebraic frames, III: dimension theories.in preparation.
Reference: [Mr70] Mrowka S.: Some comments on the author's example of a non-$R$-compact space.Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. MR 0268852
Reference: [Se59] Semadeni Z.: Sur les ensembles clairsemés.Rozprawy Mat. 19 (1959), 39 pp. Zbl 0137.16002, MR 0107849
Reference: [Se71] Semadeni Z.: Banach Spaces of Continuous Functions.Polish Scientific Publishers, Warsaw, 1971. Zbl 0478.46014, MR 0296671
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_3.pdf 387.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo