[1] Bergman G.M.: Von Neumann regular rings with tailor-made ideal lattices. unpublished notes, October 1986.
[2] Effros E.G., Handelman D.E., Shen C.-L.: 
Dimension groups and their affine representations. Amer. J. Math. 120 (1980), 385-407. 
MR 0564479 | 
Zbl 0457.46047 
[4] Goodearl K.R.: 
Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, Vol. 20, Amer. Math. Soc., Providence, R.I., 1986, xxii + 336 pp. 
MR 0845783 | 
Zbl 0589.06008 
[5] Goodearl K.R., Handelman D.E.: 
Tensor product of dimension groups and $K_0$ of unit-regular rings. Canad. J. Math. 38 3 (1986), 633-658. 
MR 0845669 
[6] Goodearl K.R., Wehrung F.: 
Representations of distributive semilattice in ideal lattices of various algebraic structures. Algebra Universalis 45 (2001), 71-102. 
MR 1809858 
[7] Grätzer G.: 
General Lattice Theory. second edition, Birkhäuser, Basel, 1998, xix + 663 pp. 
MR 1670580 
[8] Růžička P.: 
A distributive semilattice not isomorphic to the maximal semilattice quotient of the positive cone of any dimension group. J. Algebra 268 (2003), 290-300. 
MR 2005289 | 
Zbl 1025.06003 
[9] Schmidt E.T.: 
Zur Charakterisierung der Kongruenzverbände der Verbände. Mat. Časopis Sloven. Akad. Vied 18 (1968), 3-20. 
MR 0241335 
[10] Wehrung F.: 
A uniform refinement property for congruence lattices. Proc. Amer. Math. Soc. 127 (1999), 363-370. 
MR 1468207 | 
Zbl 0902.06006 
[11] Wehrung F.: 
Representation of algebraic distributive lattices with $\aleph_1$ compact elements as ideal lattices of regular rings. Publ. Mat. (Barcelona) 44 (2000), 419-435. 
MR 1800815 | 
Zbl 0989.16010 
[12] Wehrung F.: 
Semilattices of finitely generated ideals of exchange rings with finite stable rank. Trans. Amer. Math. Soc. 356 5 (2004), 1957-1970. 
MR 2031048 | 
Zbl 1034.06007