Previous |  Up |  Next

Article

Title: A semifilter approach to selection principles II: $\tau^\ast$-covers (English)
Author: Zdomskyy, Lyubomyr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 539-547
.
Category: math
.
Summary: \font\mathsf=csss10 at 8pt Developing the idea of assigning to a large cover of a topological space a corresponding semifilter, we show that every Menger topological space has the property $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T}^\ast)$ provided $(\frak u<\frak g)$, and every space with the property $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T}^\ast)$ is Hurewicz provided $(\operatorname{Depth}^+([\omega]^{\aleph_0})\leq \frak b)$. Combining this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties $\text{\mathsf P}$ and $\text{\mathsf Q}$ [do not] coincide, where $\text{\mathsf P}$ and $\text{\mathsf Q}$ run over $\bigcup_{\operatorname{fin}}(\Cal O,\Gamma )$, $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T})$, $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T}^\ast)$, $\bigcup_{\operatorname{fin}}(\Cal O, \Omega )$, and $\bigcup_{\operatorname{fin}}(\Cal O, \Cal O)$. (English)
Keyword: selection principle
Keyword: semifilter
Keyword: small cardinals
MSC: 03Axx
MSC: 03E17
MSC: 03E35
idZBL: Zbl 1150.03016
idMR: MR2281015
.
Date available: 2009-05-05T16:59:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119614
.
Related article: http://dml.cz/handle/10338.dmlcz/119546
.
Reference: [1] Banakh T., Zdomsky L.: Coherence of semifilters; http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/ booksite.html..
Reference: [2] Banakh T., Zdomsky L.: Selection principles and infinite games on multicovered spaces and their applications.in preparation.
Reference: [3] Bartoszyński T., Shelah S., Tsaban B.: Additivity properties of topological diagonalizations.J. Symbolic Logic 68 (2003), 1254-1260; (Full version: http://arxiv.org/abs/math.LO/0112262). Zbl 1071.03031, MR 2017353
Reference: [4] Blass A.: Combinatorial cardinal characteristics of the continuum.in Handbook of Set Theory (M. Foreman et al., Eds.), to appear. MR 2768685
Reference: [5] Chaber J., Pol R.: A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets.preprint.
Reference: [6] Dordal P.: A model in which the base-matrix tree cannot have cofinal branches.J. Symbolic Logic 52 (1987), 651-664. Zbl 0637.03049, MR 0902981
Reference: [7] Dow A.: Set theory in topology.in Recent Progress in General Topology (M. Hušek et al., Eds.), Elsevier Sci. Publ., Amsterdam, 1992, pp.168-197. Zbl 0796.54001, MR 1229125
Reference: [8] Miller A., Fremlin D.: On some properties of Hurewicz, Menger, and Rothberger.Fund. Math. 129 (1988), 17-33. Zbl 0665.54026, MR 0954892
Reference: [9] Gerlits J., Nagy Zs.: Some properties of $C(X)$, I.Topology Appl. 14 2 (1982), 151-1613. Zbl 0503.54020, MR 0667661
Reference: [10] Hurewicz W.: Über die Verallgemeinerung des Borelschen Theorems.Math. Z. 24 (1925), 401-421.
Reference: [11] Just W., Miller A., Scheepers M., Szeptycki S.: The combinatorics of open covers II.Topology Appl. 73 (1996), 241-266. Zbl 0870.03021, MR 1419798
Reference: [12] Laflamme C.: Equivalence of families of functions on natural numbers.Trans. Amer. Math. Soc. 330 (1992), 307-319. MR 1028761
Reference: [13] Marczewski E. (Szpilrajn): The characteristic function of a sequence of sets and some of its applications.Fund. Math. 31 (1938), 207-233.
Reference: [14] Menger K.: Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte.Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) 133 (1924), 421-444.
Reference: [15] Scheepers M.: Combinatorics of open covers I: Ramsey Theory.Topology Appl. 69 (1996), 31-62. Zbl 0848.54018, MR 1378387
Reference: [16] Shelah S., Tsaban B.: Critical cardinalities and additivity properties of combinatorial notions of smallness.J. Appl. Anal. 9 (2003), 149-162; http://arxiv.org/abs/math.LO/0304019. Zbl 1052.03026, MR 2021285
Reference: [17] Solomon R.: Families of sets and functions.Czechoslovak Math. J. 27 (1977), 556-559. Zbl 0383.04002, MR 0457218
Reference: [18] Talagrand M.: Filtres: Mesurabilité, rapidité, propriété de Baire forte.Studia Math. 74 (1982), 283-291. MR 0683750
Reference: [19] Tsaban B.: Selection principles and the minimal tower problem.Note Mat. 22 2 (2003), 53-81; http://arxiv.org/abs/math.LO/0105045. MR 2112731
Reference: [20] Tsaban B. (eds.): .SPM Bulletin 3 (2003; http://arxiv.org/abs/math.GN/0303057). Zbl 1071.03031
Reference: [21] Tsaban B., Zdomsky L.: Scales, fields, and a problem of Hurewicz.submitted to J. Amer. Math. Soc.; http://arxiv.org/abs/math.GN/0507043. MR 2421163
Reference: [22] Vaughan J.: Small uncountable cardinals and topology.in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.195-218. MR 1078647
Reference: [23] Zdomsky L.: A semifilter approach to selection principles.Comment. Math. Univ. Carolin. 46 (2005), 525-539; http://arxiv.org/abs/math.GN/0412498. Zbl 1121.03060, MR 2174530
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_16.pdf 251.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo