[2] Calderon A.P.:
Lebesgue spaces of differentiable functions and distributions. in Partial Differential Equations, Proc. Sympos. Pure Math., no. 4, Amer. Math. Soc., Providence, Rhode Island, 1961, pp.33-49.
MR 0143037 |
Zbl 0195.41103
[4] Ebin D.B.:
Viscous fluids in a domain with frictionless boundary. in Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel and R. Thiele, Eds., Teubner, Leipzig, 1983, pp.93-110.
MR 0730604 |
Zbl 0525.58030
[5] Feireisl E.:
On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 1 (2001), 83-98.
MR 1825374 |
Zbl 1115.35096
[6] Feireisl E.:
Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford, 2003.
MR 2040667 |
Zbl 1080.76001
[7] Feireisl E., Novotný A., Petzeltová H.:
On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Dynamics 3 (2001), 358-392.
MR 1867887
[9] Hoff D.:
Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal. 132 (1995), 1-14.
DOI 10.1007/BF00390346 |
MR 1360077 |
Zbl 0836.76082
[10] Lions P.-L.:
Compressible models. Mathematical Topics in Fluid Dynamics, vol. 2, Oxford Science Publication, Oxford, 1998.
MR 1637634 |
Zbl 0908.76004
[11] Nečas J.:
Les Methodes Directes en théorie des Équations Elliptiques. Masson & CIE, Éditeurs, Paris, 1967.
MR 0227584
[12] Novo S., Novotný A.:
On the existence of weak solutions to steady compressible Navier-Stokes equations when the density is not square integrable. J. Math. Kyoto Univ. 42 3 (2002), 531-550.
MR 1967222
[13] Novotný A.:
Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via decomposition method. Comment. Math. Univ. Carolin. 37 2 (1996), 305-342.
MR 1399004
[14] Novotný A., Padula M.:
Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces. Siberian Math. J. 34 (1991), 120-146.
MR 1255466
[14] Novotný A., Padula M.:
Existence and uniqueness of stationary solutions of equations of a compressible viscous heat-conductive fluid for large potential and small nonpotential external forces. Siberian Math. J. 34 (1993), 898-922.
DOI 10.1007/BF00971405 |
MR 1255466
[15] Novotný A., Straškraba I.:
Introduction to the Mathematical Theory of Compressible Flow. Oxford University Press, Oxford, 2004.
MR 2084891
[16] Plotnikov P.I., Sokolowski J.:
Concentrations of stationary solutions to compressible Navier-Stokes equations. Comm. Math. Phys. 258 (2005), 3 567-608.
DOI 10.1007/s00220-005-1358-x |
MR 2172011
[19] Tartar L.:
Compensated compactness and applications to partial differential equations. in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, L.J. Knopps, Ed., Research Notes in Math., no. 39, Pitman, Boston, 1979, pp.138-211.
MR 0584398 |
Zbl 0437.35004