Previous |  Up |  Next

Article

References:
[1] H. Boche: Konvergenzverhalten der konjugierten Shannonschen Abtastreihe. accepted in Acta Mathematica et Informatica Universitatis Ostraviensis. Zbl 0931.42024
[2] P. Butzer: HASH(0x3011b98). Personliche Mitteilung, RWTH-Aachen, 1995. Zbl 1002.47500
[3] P. Butzer W. Splettstößer R. Stens: The Sampling Theorem and Linear Prediction in Signal Analysis. Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70. MR 0928745
[4] P. Butzer R. Stens: Sampling Theory for not necessarily band-limited Functions. SIAM Review, March 1992, Vol. 34, No. 1. MR 1156288
[5] P. Butzer: A survey of Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 3 (1983), p. 185-212. MR 0724869
[6] D. P. Dryanow: Equiconvergence and equiapproximation for Entire Functions. Constructive Theory of Functions, Varna 91, Sofia 1992, p. 123-136.
[7] D. P. Dryanow: On the convergence and saturation problem of a sequence of discrete linear Operators of exponential type in $L_p(-\infty, \infty)$ Spaces. Acta Math. Hung. 49 (1-2) (1987), p. 103-127. MR 0869666
[8] A. Jerri: The Shannon sampling theorem - its varios extensions and applications: a tutorial review. Proc. IEEE 65 (1977), 1565-1596.
[9] R. J. Marks: Introduction to Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1991 MR 1077829 | Zbl 0729.94001
[10] R. J. Marks ed: Advanced Topics in Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1993. MR 1221743 | Zbl 0905.94002
[11] S. Ries, R. L. Stens: A Localization Principle for the Approximation by Sampling Series. in Proc. Intern. Conf. Theory of Approximation of Functions, Izdat. Nauka, Moscow, 1987, pp. 507-509.
[12] R. L. Stens: Approximation to Duration-Limited Functions by Sampling Sums. Signal Processing 2 (1980), pp. 173-176. DOI 10.1016/0165-1684(80)90007-9 | MR 0574555
[13] R. L. Stens: A Unified Apprvach to Sampling Theorems for Derivatives and Hilbert Transforms. Signal Processing 5 (1983), pp. 139-151. DOI 10.1016/0165-1684(83)90020-8 | MR 0703507
[14] R. L. Stens: Approximation of Functions by Whittaker's Cardinal Series. International Series of Numerical Mathematics, Vol. 71, 1984, pp. 137-149. MR 0821793 | Zbl 0582.42002
[15] R. L. Stens: HASH(0x3028860). Personliche Mitteilung, RWTH-Aachen, 1995. Zbl 0835.94004
Partner of
EuDML logo