[1] H. Boche:
Konvergenzverhalten der konjugierten Shannonschen Abtastreihe. accepted in Acta Mathematica et Informatica Universitatis Ostraviensis.
Zbl 0931.42024
[2] P. Butzer:
HASH(0x3011b98). Personliche Mitteilung, RWTH-Aachen, 1995.
Zbl 1002.47500
[3] P. Butzer W. Splettstößer R. Stens:
The Sampling Theorem and Linear Prediction in Signal Analysis. Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70.
MR 0928745
[4] P. Butzer R. Stens:
Sampling Theory for not necessarily band-limited Functions. SIAM Review, March 1992, Vol. 34, No. 1.
MR 1156288
[5] P. Butzer:
A survey of Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 3 (1983), p. 185-212.
MR 0724869
[6] D. P. Dryanow: Equiconvergence and equiapproximation for Entire Functions. Constructive Theory of Functions, Varna 91, Sofia 1992, p. 123-136.
[7] D. P. Dryanow:
On the convergence and saturation problem of a sequence of discrete linear Operators of exponential type in $L_p(-\infty, \infty)$ Spaces. Acta Math. Hung. 49 (1-2) (1987), p. 103-127.
MR 0869666
[8] A. Jerri: The Shannon sampling theorem - its varios extensions and applications: a tutorial review. Proc. IEEE 65 (1977), 1565-1596.
[9] R. J. Marks:
Introduction to Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1991
MR 1077829 |
Zbl 0729.94001
[10] R. J. Marks ed:
Advanced Topics in Shannon Sampling and Interpolation Theory. Sringer Texts in Electrical Engineering, Springer Verlag New York, 1993.
MR 1221743 |
Zbl 0905.94002
[11] S. Ries, R. L. Stens: A Localization Principle for the Approximation by Sampling Series. in Proc. Intern. Conf. Theory of Approximation of Functions, Izdat. Nauka, Moscow, 1987, pp. 507-509.
[14] R. L. Stens:
Approximation of Functions by Whittaker's Cardinal Series. International Series of Numerical Mathematics, Vol. 71, 1984, pp. 137-149.
MR 0821793 |
Zbl 0582.42002
[15] R. L. Stens:
HASH(0x3028860). Personliche Mitteilung, RWTH-Aachen, 1995.
Zbl 0835.94004