Previous |  Up |  Next

Article

References:
[1] Baker A.: The diophantine equation $y^2 = ax^3 + bx^2 + cx + d$. J. London Math. Soc 43 (1968), 1-9. DOI 10.1112/jlms/s1-43.1.1 | MR 0231783 | Zbl 0157.09801
[2] Baker A., Davenport H.: The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. DOI 10.1093/qmath/20.1.129 | MR 0248079
[3] Bennett M.A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., to appear. MR 1629862 | Zbl 1165.11034
[4] Brown E.: Sets in which xy + k is always a square. Math. Comp. 45 (1985), 613-620. MR 0804949 | Zbl 0577.10015
[5] Cohn J. H. E.: Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc. 7 (1965), 24-28. MR 0177944 | Zbl 0127.01902
[6] Dickson L. E.: History of the Theory of Numbers, Vol. 2. Chelsea, New York, 1966, pp. 518-519.
[7] Diophantus of Alexandria: Arithmetics and the Book of Polygonal Numbers. (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
[8] Dujella A.: Generalization of a problem of Diophantus. Acta Arith. 65 (1993), 15-27. MR 1239240 | Zbl 0849.11018
[9] Dujella A.: The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311-322. MR 1485226 | Zbl 0903.11010
[10] Dujella A.: A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc., to appear. MR 1605956 | Zbl 0937.11011
[11] Dujella A.: An extension of an old problem of Diophantus and Euler. (preprint). MR 1730070 | Zbl 1125.11308
[12] Dujella A., Petho A.: Generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2), to appear.
[13] Gupta H. K., Singh K.: On k-triad sequences. Internat. J. Math. Math. Sci. 5 (1985), 799-804. DOI 10.1155/S0161171285000886 | MR 0821637 | Zbl 0585.10006
[14] Kedlaya K. S.: Solving constrained Pell equations. Math. Comp., to appear. MR 1443123 | Zbl 0945.11027
[15] Mohanty S. P., Ramasamy A. M. S.: The simultaneous Diophantine equations $5y^2 - 20 = x^2$ and $2y^2 + 1 = z^2$. J. Number Theory 18 (1984), 356-359. DOI 10.1016/0022-314X(84)90068-4 | MR 0746870
[16] Mohanty S. P., Ramasamy A.M.S.: On $P_{r,k}$ sequences. Fibonacci Quart. 23 (1985), 36-44. MR 0786359
[17] Nagell T.: Introduction to Number Theory. Almqvist, Stockholm, Wiley, New York, 1951. MR 0043111 | Zbl 0042.26702
[18] Rickert J. H.: Simultaneous rational approximations and related diophantine equations. Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. DOI 10.1017/S0305004100076118 | MR 1207511 | Zbl 0786.11040
[19] SIMATH Manual. Universität des Saarlandes, Saarbrücken, 1993.
Partner of
EuDML logo