[1] A.V. Aho J.E. Hopcroft, J.D. Ullman:
The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, Mass. 1974.
MR 0413592
[2] E. W. Dijkstra:
A note on two problems in connections with graphs. Numer. Math. 1 (1959), 269 - 271.
MR 0107609
[3] P. van Emde Boas R. Kaas, E. Zijlstra:
Design and implementation of an efficient priority queue. Math. Systems Theory 10 (1977), 99 - 127.
MR 0431777
[4] L. R. Ford, D.R. Fulkerson:
Flows in Networks. Princeton University Press, Princeton, N.J. 1962.
MR 0159700 |
Zbl 0106.34802
[5] L. M. Fredman, R. E. Tarjan:
Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach. 34 (1987), 596 - 615.
MR 0904195
[6] L. M. Fredman, D. E. Willard: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. In: Proc. 31st FOCS, 1990, pp. 719 - 725.
[7] R. Hassin, D.B. Johnson:
An $O (n \log^{2}(n))$ algorithm for maximum flow in undirected planar network. SIAM J. Comput. 14 (1985), 612 - 624.
MR 0795934 |
Zbl 0565.90018
[8] J. E. Hopcroft, R. E. Tarjan:
Efficient planarity testing. J. Assoc. Comput. Mach. 21 (1974), 549 - 568.
MR 0359387 |
Zbl 0307.68025
[9] A. Itai, Y. Shiloach:
Maximum flow in planar networks. SIAM J. Comput. 8 (1979), 135 - 150.
MR 0529586 |
Zbl 0419.90040
[10] L. Janiga, V. Koubek:
A note on finding minimum cuts in directed planar network by parallel computations. Inform. Process. Lett. 21 (1985), 75 - 78.
MR 0810105
[11] D.B. Johnson, S. Venkatesan: Using divide and conquer to find flows in directed planar networks in $O(n^{15}\log(n))$ time. In: Proc. 20th Annual Allerton Conf. of Communication, Control and Computing, 1982, pp. 898 - 905.
[12] K. Mehlhorn:
Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness. EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin - Heidelberg - New York - Tokio 1984.
MR 0756414 |
Zbl 0556.68002
[13] O. Ore:
Theory of Graphs. Amer. Math. Soc. Coll. Publ., Vol. XXXVIII, Providence, R.I. 1962.
MR 0150753 |
Zbl 0105.35401
[14] J. H. Reif:
Minimum S-T cut of a planar undirected network on $O(n \log^{2} (n))$ time. In: Automata, Languages and Programming (S. Even, D. Kariv, eds., Lecture Notes in Computer Science 115), Springer-Verlag, Berlin - Heidelberg - New York - Tokio 1981, pp. 56 - 67.
MR 0635129